Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p3.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1p3.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1p3.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1p3.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1p3.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1p3.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1p3.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1p3.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1p3.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
10 |
|
aks6d1c1p3.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
11 |
|
aks6d1c1p3.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
12 |
|
aks6d1c1p3.12 |
⊢ + = ( +g ‘ 𝑆 ) |
13 |
|
aks6d1c1p3.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
14 |
|
aks6d1c1p3.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
15 |
|
aks6d1c1p3.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
|
aks6d1c1p3.16 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
17 |
|
aks6d1c1p3.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
18 |
|
aks6d1c1p3.18 |
⊢ 𝐹 = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
19 |
|
aks6d1c1p3.19 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
20 |
|
aks6d1c1p3.20 |
⊢ ( 𝜑 → 𝑁 ∼ 𝐹 ) |
21 |
|
aks6d1c1p3.21 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
22 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹 = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑂 ‘ 𝐹 ) = ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
24 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
29 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
30 |
26 29
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
31 |
30
|
cmnmndd |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd ) |
33 |
1 20
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
34 |
33
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
35 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
36 |
14 35
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
37 |
|
nndivdvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℕ ) ) |
38 |
34 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℕ ) ) |
39 |
17 38
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
40 |
39
|
nnnn0d |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ0 ) |
42 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
43 |
30 42 7
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
44 |
43
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
45 |
44
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) |
46 |
45
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
47 |
28 7 32 41 46
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
48 |
6 25
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
49 |
48
|
eqcomi |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) |
50 |
49
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) ) |
52 |
47 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
11 4 25 2 3 27 52
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
54 |
26
|
crngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
55 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
56 |
55
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
57 |
|
rhmghm |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) ) |
58 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
59 |
58 25
|
ghmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring GrpHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
60 |
54 56 57 59
|
4syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
61 |
60 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
11 2 25 8 3 27 62 52
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
64 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
65 |
11 2 25 3 27 52 53 63 12 64
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
66 |
65
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
67 |
24 66
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
68 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) |
69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) ) |
70 |
51
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
71 |
46 70
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
72 |
11 4 49 2 3 27 46
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) ) |
73 |
11 2 25 8 3 27 62 71
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ 𝑦 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
74 |
11 2 25 3 27 71 72 73 12 64
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
75 |
74
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) = ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
76 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
77 |
69 76
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
78 |
25 25
|
isrim |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) |
79 |
21 78
|
sylib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) ) |
80 |
79
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
82 |
27
|
crnggrpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ Grp ) |
83 |
25 64 82 52 62
|
grpcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ 𝐾 ) ) |
84 |
|
f1ocnvfv1 |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
85 |
81 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
86 |
85
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
87 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ) |
88 |
|
id |
⊢ ( 𝑥 = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) → 𝑥 = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
89 |
88
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑥 = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) → 𝑥 = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
90 |
89
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑥 = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
91 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
92 |
91 25
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
93 |
6
|
fveq2i |
⊢ ( .g ‘ 𝑉 ) = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
94 |
7 93
|
eqtri |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐾 ) ) |
95 |
91
|
ringmgp |
⊢ ( 𝐾 ∈ Ring → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
96 |
54 95
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( mulGrp ‘ 𝐾 ) ∈ Mnd ) |
98 |
36
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑃 ∈ ℕ0 ) |
100 |
92 94 97 99 83
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
101 |
87 90 83 100
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑃 ↑ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
103 |
79
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) ) |
104 |
|
rhmghm |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingHom 𝐾 ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 GrpHom 𝐾 ) ) |
105 |
103 104
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 GrpHom 𝐾 ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 GrpHom 𝐾 ) ) |
107 |
25 64 64
|
ghmlin |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 GrpHom 𝐾 ) ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
108 |
106 52 62 107
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
109 |
|
id |
⊢ ( 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) → 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) → 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) |
111 |
110
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
112 |
92 94 97 99 52
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ∈ ( Base ‘ 𝐾 ) ) |
113 |
87 111 52 112
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
114 |
|
id |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) → 𝑥 = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
116 |
115
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑥 = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
117 |
|
eqid |
⊢ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) |
118 |
10 25 94 117 14 19 26
|
fermltlchr |
⊢ ( 𝜑 → ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
119 |
118
|
eqcomd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
121 |
120 62
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ 𝐾 ) ) |
122 |
87 116 62 121
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
123 |
113 122
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
124 |
102 108 123
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
125 |
34
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑁 ∈ ℂ ) |
127 |
36
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑃 ∈ ℂ ) |
129 |
36
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑃 ≠ 0 ) |
131 |
126 128 130
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 ) |
132 |
131
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑁 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
133 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝑁 ↑ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) ) |
134 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ 𝑦 ) ) = ( 𝑁 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
135 |
133 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝑁 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
136 |
135
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
137 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
138 |
137
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
139 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑁 ↑ 𝑧 ) = ( 𝑁 ↑ 𝑦 ) ) |
140 |
139
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ) |
141 |
138 140
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) ↔ ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ) ) |
142 |
2
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑆 ∈ CRing ) |
143 |
26 142
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
144 |
143
|
crnggrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
145 |
4 2 3
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ 𝐵 ) |
146 |
54 145
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
147 |
2 8 25 3
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) |
148 |
54 61 147
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) |
149 |
144 146 148
|
3jca |
⊢ ( 𝜑 → ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) ) |
150 |
3 12
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
151 |
149 150
|
syl |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
152 |
18
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
153 |
152
|
eleq1d |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ) ) |
154 |
151 153
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
155 |
1 154 34
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝑁 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ) ) |
156 |
20 155
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ) |
157 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) |
158 |
157
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) ) |
159 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑁 ↑ 𝑦 ) = ( 𝑁 ↑ 𝑧 ) ) |
160 |
159
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) ) |
161 |
158 160
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ↔ ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) ) ) |
162 |
161
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) ) |
163 |
156 162
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑧 ) ) ) |
165 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) |
166 |
141 164 165
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) ) |
167 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ↑ 𝑦 ) ) ) |
168 |
34
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑁 ∈ ℕ0 ) |
170 |
28 7 32 169 46
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
171 |
170 51
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
172 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
173 |
11 4 25 2 3 27 171
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( 𝑁 ↑ 𝑦 ) ) ) |
174 |
173
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( 𝑁 ↑ 𝑦 ) ) |
175 |
172 174
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( 𝑁 ↑ 𝑦 ) ) ) |
176 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ) |
177 |
11 2 25 8 3 27 62 171
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
178 |
177
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) |
179 |
176 178
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
180 |
11 2 25 3 27 171 175 179 12 64
|
evl1addd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
181 |
180
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
182 |
167 181
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝑁 ↑ 𝑦 ) ) = ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
183 |
166 182
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
184 |
136 183
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
185 |
132 184
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
186 |
131
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
187 |
186
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑁 ↑ 𝑦 ) = ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑦 ) ) |
188 |
187 120
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
189 |
185 188
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
190 |
71 92
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
191 |
99 41 190
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ∈ ℕ0 ∧ ( 𝑁 / 𝑃 ) ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
192 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
193 |
192 94
|
mulgnn0ass |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ ( 𝑃 ∈ ℕ0 ∧ ( 𝑁 / 𝑃 ) ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑦 ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
194 |
97 191 193
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑦 ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
195 |
194
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
196 |
189 195
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
197 |
25 64 82 71 62
|
grpcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ 𝐾 ) ) |
198 |
197 92
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
199 |
99 41 198
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ∈ ℕ0 ∧ ( 𝑁 / 𝑃 ) ∈ ℕ0 ∧ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
200 |
192 94
|
mulgnn0ass |
⊢ ( ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ ( 𝑃 ∈ ℕ0 ∧ ( 𝑁 / 𝑃 ) ∈ ℕ0 ∧ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
201 |
97 199 200
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
202 |
196 201
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ( +g ‘ 𝐾 ) ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
203 |
124 202
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
204 |
|
id |
⊢ ( 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) → 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
205 |
204
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
206 |
205
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑥 = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
207 |
92 94 97 41 197
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
208 |
203 100
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
209 |
87 206 207 208
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) = ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
210 |
209
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑃 ↑ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
211 |
101 203 210
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) |
212 |
211
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) = ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) ) |
213 |
|
f1ocnvfv1 |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
214 |
81 207 213
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ‘ ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
215 |
86 212 214
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) ) |
216 |
215
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( 𝑦 ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) ) |
217 |
77 216
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ( +g ‘ 𝐾 ) ( ( ℤRHom ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
218 |
67 217
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) = ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
219 |
218
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
220 |
219
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) |
221 |
1 154 39
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( ( 𝑁 / 𝑃 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑁 / 𝑃 ) ↑ 𝑦 ) ) ) ) |
222 |
220 221
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∼ 𝐹 ) |