Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p4.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1p4.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1p4.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1p4.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1p4.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1p4.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1p4.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1p4.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1p4.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
10 |
|
aks6d1c1p4.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
11 |
|
aks6d1c1p4.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
12 |
|
aks6d1c1p4.12 |
⊢ + = ( +g ‘ 𝑆 ) |
13 |
|
aks6d1c1p4.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
14 |
|
aks6d1c1p4.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
15 |
|
aks6d1c1p4.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
|
aks6d1c1p4.16 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
17 |
|
aks6d1c1p4.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
18 |
|
aks6d1c1p4.18 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐹 ) |
19 |
|
aks6d1c1p4.19 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐺 ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
21 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
23 |
6 20
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
24 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
25 |
21 24
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
26 |
25
|
cmnmndd |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd ) |
28 |
1 18
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
30 |
29
|
nnnn0d |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐸 ∈ ℕ0 ) |
32 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
33 |
|
eqid |
⊢ ( .g ‘ 𝑉 ) = ( .g ‘ 𝑉 ) |
34 |
25 32 33
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
35 |
34
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) |
37 |
36
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
38 |
37 23
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
39 |
23 7 27 31 38
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
28
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
43 |
41 42
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
44 |
1 19
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐺 ∈ 𝐵 ) ) |
45 |
44
|
simprd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐺 ∈ 𝐵 ) |
47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
48 |
46 47
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐺 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
49 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
50 |
5 49
|
mgpplusg |
⊢ ( .r ‘ 𝑆 ) = ( +g ‘ 𝑊 ) |
51 |
50
|
eqcomi |
⊢ ( +g ‘ 𝑊 ) = ( .r ‘ 𝑆 ) |
52 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
53 |
11 2 20 3 22 39 43 48 51 52
|
evl1muld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) ) |
54 |
53
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
55 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ CMnd ) |
56 |
11 2 20 3 22 38 41
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
57 |
6
|
eqcomi |
⊢ ( mulGrp ‘ 𝐾 ) = 𝑉 |
58 |
57
|
fveq2i |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ 𝑉 ) |
59 |
23 58
|
eqtr4i |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
60 |
59
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
61 |
60
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
62 |
56 61
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
63 |
11 2 20 3 22 38 46
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
60
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
65 |
63 64
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
66 |
31 62 65
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
67 |
57
|
fveq2i |
⊢ ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( +g ‘ 𝑉 ) |
68 |
58 7 67
|
mulgnn0di |
⊢ ( ( 𝑉 ∈ CMnd ∧ ( 𝐸 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
69 |
55 66 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
70 |
6 52
|
mgpplusg |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ 𝑉 ) |
71 |
6
|
fveq2i |
⊢ ( +g ‘ 𝑉 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
72 |
70 71
|
eqtri |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
74 |
73
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .r ‘ 𝐾 ) ) |
75 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
76 |
75
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
77 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ 𝑧 ) = ( 𝐸 ↑ 𝑦 ) ) |
78 |
77
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
79 |
76 78
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
80 |
1 40 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
81 |
18 80
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
82 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) ) |
84 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐸 ↑ 𝑦 ) = ( 𝐸 ↑ 𝑧 ) ) |
85 |
84
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
86 |
83 85
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) ) |
87 |
86
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
88 |
81 87
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
90 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) |
91 |
79 89 90
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
92 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) |
93 |
92
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
94 |
77
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
95 |
93 94
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
96 |
1 45 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ 𝐺 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
97 |
19 96
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
98 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) |
99 |
98
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
100 |
84
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
101 |
99 100
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) ) |
102 |
101
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
103 |
97 102
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
105 |
95 104 90
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
106 |
74 91 105
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
107 |
69 106
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
108 |
72
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .r ‘ 𝐾 ) |
109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .r ‘ 𝐾 ) ) |
110 |
109
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
111 |
110
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
112 |
107 111
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
113 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
114 |
41 113
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
115 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) |
116 |
46 115
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐺 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
117 |
11 2 20 3 22 38 114 116 51 52
|
evl1muld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
118 |
117
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
119 |
118
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) |
120 |
119
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) ) |
121 |
112 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) ) |
122 |
54 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) ) |
123 |
122
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
125 |
2
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑆 ∈ CRing ) |
126 |
21 125
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
127 |
126
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
128 |
3 51 127 40 45
|
ringcld |
⊢ ( 𝜑 → ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ∈ 𝐵 ) |
129 |
1 128 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
130 |
124 129
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) |