| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c1p4.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
| 2 |
|
aks6d1c1p4.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
| 3 |
|
aks6d1c1p4.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
aks6d1c1p4.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
| 5 |
|
aks6d1c1p4.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
| 6 |
|
aks6d1c1p4.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
| 7 |
|
aks6d1c1p4.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
| 8 |
|
aks6d1c1p4.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
| 9 |
|
aks6d1c1p4.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
| 10 |
|
aks6d1c1p4.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 11 |
|
aks6d1c1p4.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
| 12 |
|
aks6d1c1p4.12 |
⊢ + = ( +g ‘ 𝑆 ) |
| 13 |
|
aks6d1c1p4.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 14 |
|
aks6d1c1p4.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 15 |
|
aks6d1c1p4.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 16 |
|
aks6d1c1p4.16 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 17 |
|
aks6d1c1p4.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 18 |
|
aks6d1c1p4.18 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐹 ) |
| 19 |
|
aks6d1c1p4.19 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐺 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 21 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
| 23 |
6 20
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
| 24 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
| 25 |
21 24
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
| 26 |
25
|
cmnmndd |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd ) |
| 28 |
1 18
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
| 29 |
28
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
| 30 |
29
|
nnnn0d |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐸 ∈ ℕ0 ) |
| 32 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
| 33 |
|
eqid |
⊢ ( .g ‘ 𝑉 ) = ( .g ‘ 𝑉 ) |
| 34 |
25 32 33
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
| 35 |
34
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) |
| 37 |
36
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
| 38 |
37 23
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
| 39 |
23 7 27 31 38
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
28
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
| 42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 43 |
41 42
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 44 |
1 19
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐺 ∈ 𝐵 ) ) |
| 45 |
44
|
simprd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐺 ∈ 𝐵 ) |
| 47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 48 |
46 47
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐺 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 49 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 50 |
5 49
|
mgpplusg |
⊢ ( .r ‘ 𝑆 ) = ( +g ‘ 𝑊 ) |
| 51 |
50
|
eqcomi |
⊢ ( +g ‘ 𝑊 ) = ( .r ‘ 𝑆 ) |
| 52 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 53 |
11 2 20 3 22 39 43 48 51 52
|
evl1muld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) ) |
| 54 |
53
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 55 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ CMnd ) |
| 56 |
11 2 20 3 22 38 41
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
| 57 |
6
|
eqcomi |
⊢ ( mulGrp ‘ 𝐾 ) = 𝑉 |
| 58 |
57
|
fveq2i |
⊢ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) = ( Base ‘ 𝑉 ) |
| 59 |
23 58
|
eqtr4i |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 60 |
59
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 61 |
60
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
| 62 |
56 61
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 63 |
11 2 20 3 22 38 46
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
| 64 |
60
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ↔ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
| 65 |
63 64
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 66 |
31 62 65
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) |
| 67 |
57
|
fveq2i |
⊢ ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( +g ‘ 𝑉 ) |
| 68 |
58 7 67
|
mulgnn0di |
⊢ ( ( 𝑉 ∈ CMnd ∧ ( 𝐸 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 69 |
55 66 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 70 |
6 52
|
mgpplusg |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ 𝑉 ) |
| 71 |
6
|
fveq2i |
⊢ ( +g ‘ 𝑉 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 72 |
70 71
|
eqtri |
⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 74 |
73
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .r ‘ 𝐾 ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
| 77 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ 𝑧 ) = ( 𝐸 ↑ 𝑦 ) ) |
| 78 |
77
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 79 |
76 78
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 80 |
1 40 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 81 |
18 80
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 82 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) ) |
| 84 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐸 ↑ 𝑦 ) = ( 𝐸 ↑ 𝑧 ) ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 86 |
83 85
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) ) |
| 87 |
86
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 88 |
81 87
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 90 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) |
| 91 |
79 89 90
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 92 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 93 |
92
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 94 |
77
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 95 |
93 94
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 96 |
1 45 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ 𝐺 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 97 |
19 96
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 100 |
84
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 101 |
99 100
|
eqeq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) ) |
| 102 |
101
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 103 |
97 102
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
| 105 |
95 104 90
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 106 |
74 91 105
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 107 |
69 106
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 108 |
72
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .r ‘ 𝐾 ) |
| 109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( +g ‘ ( mulGrp ‘ 𝐾 ) ) = ( .r ‘ 𝐾 ) ) |
| 110 |
109
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 111 |
110
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( +g ‘ ( mulGrp ‘ 𝐾 ) ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 112 |
107 111
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 113 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
| 114 |
41 113
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
| 115 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) |
| 116 |
46 115
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐺 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 117 |
11 2 20 3 22 38 114 116 51 52
|
evl1muld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
| 118 |
117
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) = ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 119 |
118
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) |
| 120 |
119
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) ) |
| 121 |
112 120
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ( .r ‘ 𝐾 ) ( ( 𝑂 ‘ 𝐺 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) ) |
| 122 |
54 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) ) |
| 123 |
122
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
| 125 |
2
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑆 ∈ CRing ) |
| 126 |
21 125
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 127 |
126
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 128 |
3 51 127 40 45
|
ringcld |
⊢ ( 𝜑 → ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ∈ 𝐵 ) |
| 129 |
1 128 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
| 130 |
124 129
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝐹 ( +g ‘ 𝑊 ) 𝐺 ) ) |