Metamath Proof Explorer


Theorem aks6d1c1p5

Description: The product of exponents is introspective. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses aks6d1c1p5.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝑦 ) ) ) }
aks6d1c1p5.2 𝑆 = ( Poly1𝐾 )
aks6d1c1p5.3 𝐵 = ( Base ‘ 𝑆 )
aks6d1c1p5.4 𝑋 = ( var1𝐾 )
aks6d1c1p5.5 𝑊 = ( mulGrp ‘ 𝑆 )
aks6d1c1p5.6 𝑉 = ( mulGrp ‘ 𝐾 )
aks6d1c1p5.7 = ( .g𝑉 )
aks6d1c1p5.8 𝐶 = ( algSc ‘ 𝑆 )
aks6d1c1p5.10 𝑃 = ( chr ‘ 𝐾 )
aks6d1c1p5.11 𝑂 = ( eval1𝐾 )
aks6d1c1p5.12 + = ( +g𝑆 )
aks6d1c1p5.13 ( 𝜑𝐾 ∈ Field )
aks6d1c1p5.14 ( 𝜑𝑃 ∈ ℙ )
aks6d1c1p5.15 ( 𝜑𝑅 ∈ ℕ )
aks6d1c1p5.16 ( 𝜑 → ( 𝐸 gcd 𝑅 ) = 1 )
aks6d1c1p5.17 ( 𝜑𝑃𝑁 )
aks6d1c1p5.18 ( 𝜑𝐷 𝐹 )
aks6d1c1p5.19 ( 𝜑𝐸 𝐹 )
Assertion aks6d1c1p5 ( 𝜑 → ( 𝐷 · 𝐸 ) 𝐹 )

Proof

Step Hyp Ref Expression
1 aks6d1c1p5.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝑦 ) ) ) }
2 aks6d1c1p5.2 𝑆 = ( Poly1𝐾 )
3 aks6d1c1p5.3 𝐵 = ( Base ‘ 𝑆 )
4 aks6d1c1p5.4 𝑋 = ( var1𝐾 )
5 aks6d1c1p5.5 𝑊 = ( mulGrp ‘ 𝑆 )
6 aks6d1c1p5.6 𝑉 = ( mulGrp ‘ 𝐾 )
7 aks6d1c1p5.7 = ( .g𝑉 )
8 aks6d1c1p5.8 𝐶 = ( algSc ‘ 𝑆 )
9 aks6d1c1p5.10 𝑃 = ( chr ‘ 𝐾 )
10 aks6d1c1p5.11 𝑂 = ( eval1𝐾 )
11 aks6d1c1p5.12 + = ( +g𝑆 )
12 aks6d1c1p5.13 ( 𝜑𝐾 ∈ Field )
13 aks6d1c1p5.14 ( 𝜑𝑃 ∈ ℙ )
14 aks6d1c1p5.15 ( 𝜑𝑅 ∈ ℕ )
15 aks6d1c1p5.16 ( 𝜑 → ( 𝐸 gcd 𝑅 ) = 1 )
16 aks6d1c1p5.17 ( 𝜑𝑃𝑁 )
17 aks6d1c1p5.18 ( 𝜑𝐷 𝐹 )
18 aks6d1c1p5.19 ( 𝜑𝐸 𝐹 )
19 12 fldcrngd ( 𝜑𝐾 ∈ CRing )
20 6 crngmgp ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd )
21 19 20 syl ( 𝜑𝑉 ∈ CMnd )
22 21 cmnmndd ( 𝜑𝑉 ∈ Mnd )
23 22 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd )
24 1 17 aks6d1c1p1rcl ( 𝜑 → ( 𝐷 ∈ ℕ ∧ 𝐹𝐵 ) )
25 24 simpld ( 𝜑𝐷 ∈ ℕ )
26 25 nnnn0d ( 𝜑𝐷 ∈ ℕ0 )
27 26 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐷 ∈ ℕ0 )
28 1 18 aks6d1c1p1rcl ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹𝐵 ) )
29 28 simpld ( 𝜑𝐸 ∈ ℕ )
30 29 nnnn0d ( 𝜑𝐸 ∈ ℕ0 )
31 30 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐸 ∈ ℕ0 )
32 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
33 19 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing )
34 14 nnnn0d ( 𝜑𝑅 ∈ ℕ0 )
35 21 34 7 isprimroot ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑞 ∈ ℕ0 ( ( 𝑞 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑞 ) ) ) )
36 35 biimpd ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑞 ∈ ℕ0 ( ( 𝑞 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑞 ) ) ) )
37 36 imp ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑞 ∈ ℕ0 ( ( 𝑞 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑞 ) ) )
38 37 simp1d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) )
39 6 32 mgpbas ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 )
40 39 a1i ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) )
41 40 eqcomd ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) )
42 41 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) )
43 38 42 eleqtrd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) )
44 24 simprd ( 𝜑𝐹𝐵 )
45 44 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹𝐵 )
46 10 2 32 3 33 43 45 fveval1fvcl ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) )
47 42 eleq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ↔ ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) )
48 46 47 mpbird ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) )
49 27 31 48 3jca ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ∈ ℕ0𝐸 ∈ ℕ0 ∧ ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) )
50 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
51 50 7 mulgnn0ass ( ( 𝑉 ∈ Mnd ∧ ( 𝐷 ∈ ℕ0𝐸 ∈ ℕ0 ∧ ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) ) → ( ( 𝐷 · 𝐸 ) ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( 𝐷 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) ) )
52 23 49 51 syl2anc ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐷 · 𝐸 ) ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( 𝐷 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) ) )
53 eqidd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) = ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) )
54 simpr ( ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑙 = 𝑦 ) → 𝑙 = 𝑦 )
55 54 oveq2d ( ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑙 = 𝑦 ) → ( 𝐸 𝑙 ) = ( 𝐸 𝑦 ) )
56 simpr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) )
57 50 7 23 31 38 mulgnn0cld ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 𝑦 ) ∈ ( Base ‘ 𝑉 ) )
58 53 55 56 57 fvmptd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) = ( 𝐸 𝑦 ) )
59 58 fveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) )
60 59 oveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) = ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) )
61 60 eqcomd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) = ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) )
62 2fveq3 ( 𝑖 = 𝑦 → ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) = ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) )
63 62 oveq2d ( 𝑖 = 𝑦 → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) )
64 fveq2 ( 𝑖 = 𝑦 → ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) = ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) )
65 64 oveq2d ( 𝑖 = 𝑦 → ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) = ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) )
66 65 fveq2d ( 𝑖 = 𝑦 → ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) )
67 63 66 eqeq12d ( 𝑖 = 𝑦 → ( ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) ) )
68 1 44 25 aks6d1c1p1 ( 𝜑 → ( 𝐷 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) ) )
69 68 biimpd ( 𝜑 → ( 𝐷 𝐹 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) ) )
70 17 69 mpd ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) )
71 7 oveqi ( 𝐸 𝑙 ) = ( 𝐸 ( .g𝑉 ) 𝑙 )
72 71 a1i ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝐸 𝑙 ) = ( 𝐸 ( .g𝑉 ) 𝑙 ) )
73 72 mpteq2ia ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) = ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ( .g𝑉 ) 𝑙 ) )
74 73 21 14 29 15 primrootscoprbij2 ( 𝜑 → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –1-1-onto→ ( 𝑉 PrimRoots 𝑅 ) )
75 f1ofo ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –1-1-onto→ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –onto→ ( 𝑉 PrimRoots 𝑅 ) )
76 74 75 syl ( 𝜑 → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –onto→ ( 𝑉 PrimRoots 𝑅 ) )
77 fveq2 ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) = ( ( 𝑂𝐹 ) ‘ 𝑦 ) )
78 77 oveq2d ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) )
79 oveq2 ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) = ( 𝐷 𝑦 ) )
80 79 fveq2d ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) )
81 78 80 eqeq12d ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) ) )
82 81 cbvfo ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –onto→ ( 𝑉 PrimRoots 𝑅 ) → ( ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) ) )
83 76 82 syl ( 𝜑 → ( ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 𝑦 ) ) ) )
84 70 83 mpbird ( 𝜑 → ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) )
85 84 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑖 ) ) ) )
86 67 85 56 rspcdva ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) )
87 58 oveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) = ( 𝐷 ( 𝐸 𝑦 ) ) )
88 87 fveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( 𝐸 𝑦 ) ) ) )
89 86 88 eqtrd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( 𝐸 𝑦 ) ) ) )
90 61 89 eqtr2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( 𝐸 𝑦 ) ) ) = ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) )
91 fveq2 ( 𝑧 = 𝑦 → ( ( 𝑂𝐹 ) ‘ 𝑧 ) = ( ( 𝑂𝐹 ) ‘ 𝑦 ) )
92 91 oveq2d ( 𝑧 = 𝑦 → ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑧 ) ) = ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) )
93 oveq2 ( 𝑧 = 𝑦 → ( 𝐸 𝑧 ) = ( 𝐸 𝑦 ) )
94 93 fveq2d ( 𝑧 = 𝑦 → ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑧 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) )
95 92 94 eqeq12d ( 𝑧 = 𝑦 → ( ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑧 ) ) ↔ ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) )
96 1 44 29 aks6d1c1p1 ( 𝜑 → ( 𝐸 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) )
97 96 biimpd ( 𝜑 → ( 𝐸 𝐹 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) )
98 18 97 mpd ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) )
99 nfv 𝑦 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑧 ) )
100 nfv 𝑧 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) )
101 99 100 95 cbvralw ( ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) )
102 98 101 sylibr ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑧 ) ) )
103 102 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑧 ) ) )
104 95 103 56 rspcdva ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) )
105 104 eqcomd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) = ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) )
106 105 oveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( ( 𝑂𝐹 ) ‘ ( 𝐸 𝑦 ) ) ) = ( 𝐷 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) ) )
107 90 106 eqtrd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( 𝐸 𝑦 ) ) ) = ( 𝐷 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) ) )
108 107 eqcomd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( 𝐸 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( 𝐸 𝑦 ) ) ) )
109 27 31 38 3jca ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ ( Base ‘ 𝑉 ) ) )
110 50 7 mulgnn0ass ( ( 𝑉 ∈ Mnd ∧ ( 𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ ( Base ‘ 𝑉 ) ) ) → ( ( 𝐷 · 𝐸 ) 𝑦 ) = ( 𝐷 ( 𝐸 𝑦 ) ) )
111 110 eqcomd ( ( 𝑉 ∈ Mnd ∧ ( 𝐷 ∈ ℕ0𝐸 ∈ ℕ0𝑦 ∈ ( Base ‘ 𝑉 ) ) ) → ( 𝐷 ( 𝐸 𝑦 ) ) = ( ( 𝐷 · 𝐸 ) 𝑦 ) )
112 23 109 111 syl2anc ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ( 𝐸 𝑦 ) ) = ( ( 𝐷 · 𝐸 ) 𝑦 ) )
113 112 fveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ ( 𝐷 ( 𝐸 𝑦 ) ) ) = ( ( 𝑂𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) 𝑦 ) ) )
114 52 108 113 3eqtrd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐷 · 𝐸 ) ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) 𝑦 ) ) )
115 114 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( ( 𝐷 · 𝐸 ) ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) 𝑦 ) ) )
116 25 29 nnmulcld ( 𝜑 → ( 𝐷 · 𝐸 ) ∈ ℕ )
117 1 44 116 aks6d1c1p1 ( 𝜑 → ( ( 𝐷 · 𝐸 ) 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( ( 𝐷 · 𝐸 ) ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) 𝑦 ) ) ) )
118 115 117 mpbird ( 𝜑 → ( 𝐷 · 𝐸 ) 𝐹 )