Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p5.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1p5.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1p5.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1p5.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1p5.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1p5.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1p5.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1p5.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1p5.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
10 |
|
aks6d1c1p5.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
11 |
|
aks6d1c1p5.12 |
⊢ + = ( +g ‘ 𝑆 ) |
12 |
|
aks6d1c1p5.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
13 |
|
aks6d1c1p5.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
14 |
|
aks6d1c1p5.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
15 |
|
aks6d1c1p5.16 |
⊢ ( 𝜑 → ( 𝐸 gcd 𝑅 ) = 1 ) |
16 |
|
aks6d1c1p5.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
17 |
|
aks6d1c1p5.18 |
⊢ ( 𝜑 → 𝐷 ∼ 𝐹 ) |
18 |
|
aks6d1c1p5.19 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐹 ) |
19 |
12
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
20 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
22 |
21
|
cmnmndd |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd ) |
24 |
1 17
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐷 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
26 |
25
|
nnnn0d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐷 ∈ ℕ0 ) |
28 |
1 18
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
30 |
29
|
nnnn0d |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐸 ∈ ℕ0 ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
33 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
34 |
14
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
35 |
21 34 7
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑞 ∈ ℕ0 ( ( 𝑞 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑞 ) ) ) ) |
36 |
35
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑞 ∈ ℕ0 ( ( 𝑞 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑞 ) ) ) ) |
37 |
36
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑞 ∈ ℕ0 ( ( 𝑞 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑞 ) ) ) |
38 |
37
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
39 |
6 32
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
40 |
39
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) ) |
41 |
40
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) ) |
43 |
38 42
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
44 |
24
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
46 |
10 2 32 3 33 43 45
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
42
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ↔ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) ) |
48 |
46 47
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
49 |
27 31 48
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
51 |
50 7
|
mulgnn0ass |
⊢ ( ( 𝑉 ∈ Mnd ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) ) → ( ( 𝐷 · 𝐸 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝐷 ↑ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) ) |
52 |
23 49 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐷 · 𝐸 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( 𝐷 ↑ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) ) |
53 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) = ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ) |
54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑙 = 𝑦 ) → 𝑙 = 𝑦 ) |
55 |
54
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) ∧ 𝑙 = 𝑦 ) → ( 𝐸 ↑ 𝑙 ) = ( 𝐸 ↑ 𝑦 ) ) |
56 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) |
57 |
50 7 23 31 38
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
58 |
53 55 56 57
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) = ( 𝐸 ↑ 𝑦 ) ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
60 |
59
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) = ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
61 |
60
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
62 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑖 = 𝑦 → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
64 |
|
fveq2 |
⊢ ( 𝑖 = 𝑦 → ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) = ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝑖 = 𝑦 → ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) = ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) |
66 |
65
|
fveq2d |
⊢ ( 𝑖 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
67 |
63 66
|
eqeq12d |
⊢ ( 𝑖 = 𝑦 → ( ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) ) ) |
68 |
1 44 25
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐷 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) ) |
69 |
68
|
biimpd |
⊢ ( 𝜑 → ( 𝐷 ∼ 𝐹 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) ) |
70 |
17 69
|
mpd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) |
71 |
7
|
oveqi |
⊢ ( 𝐸 ↑ 𝑙 ) = ( 𝐸 ( .g ‘ 𝑉 ) 𝑙 ) |
72 |
71
|
a1i |
⊢ ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝐸 ↑ 𝑙 ) = ( 𝐸 ( .g ‘ 𝑉 ) 𝑙 ) ) |
73 |
72
|
mpteq2ia |
⊢ ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) = ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ( .g ‘ 𝑉 ) 𝑙 ) ) |
74 |
73 21 14 29 15
|
primrootscoprbij2 |
⊢ ( 𝜑 → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –1-1-onto→ ( 𝑉 PrimRoots 𝑅 ) ) |
75 |
|
f1ofo |
⊢ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –1-1-onto→ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –onto→ ( 𝑉 PrimRoots 𝑅 ) ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –onto→ ( 𝑉 PrimRoots 𝑅 ) ) |
77 |
|
fveq2 |
⊢ ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
78 |
77
|
oveq2d |
⊢ ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
79 |
|
oveq2 |
⊢ ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) = ( 𝐷 ↑ 𝑦 ) ) |
80 |
79
|
fveq2d |
⊢ ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) |
81 |
78 80
|
eqeq12d |
⊢ ( ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) = 𝑦 → ( ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) ) |
82 |
81
|
cbvfo |
⊢ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) : ( 𝑉 PrimRoots 𝑅 ) –onto→ ( 𝑉 PrimRoots 𝑅 ) → ( ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) ) |
83 |
76 82
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ 𝑦 ) ) ) ) |
84 |
70 83
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑖 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑖 ) ) ) ) |
86 |
67 85 56
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
87 |
58
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) = ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) |
88 |
87
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) ) |
89 |
86 88
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝑙 ∈ ( 𝑉 PrimRoots 𝑅 ) ↦ ( 𝐸 ↑ 𝑙 ) ) ‘ 𝑦 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) ) |
90 |
61 89
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
91 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
92 |
91
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
93 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐸 ↑ 𝑧 ) = ( 𝐸 ↑ 𝑦 ) ) |
94 |
93
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
95 |
92 94
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ↔ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
96 |
1 44 29
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
97 |
96
|
biimpd |
⊢ ( 𝜑 → ( 𝐸 ∼ 𝐹 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
98 |
18 97
|
mpd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
99 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) |
100 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) |
101 |
99 100 95
|
cbvralw |
⊢ ( ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
102 |
98 101
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ∀ 𝑧 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑧 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑧 ) ) ) |
104 |
95 103 56
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
105 |
104
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
106 |
105
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐷 ↑ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) ) |
107 |
90 106
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) = ( 𝐷 ↑ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) ) |
108 |
107
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( 𝐸 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) ) |
109 |
27 31 38
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ 𝑉 ) ) ) |
110 |
50 7
|
mulgnn0ass |
⊢ ( ( 𝑉 ∈ Mnd ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ 𝑉 ) ) ) → ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) = ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) |
111 |
110
|
eqcomd |
⊢ ( ( 𝑉 ∈ Mnd ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ 𝑉 ) ) ) → ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) ) |
112 |
23 109 111
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) ) |
113 |
112
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ ( 𝐷 ↑ ( 𝐸 ↑ 𝑦 ) ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) ) ) |
114 |
52 108 113
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐷 · 𝐸 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) ) ) |
115 |
114
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( ( 𝐷 · 𝐸 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) ) ) |
116 |
25 29
|
nnmulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐸 ) ∈ ℕ ) |
117 |
1 44 116
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐸 ) ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( ( 𝐷 · 𝐸 ) ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( ( 𝐷 · 𝐸 ) ↑ 𝑦 ) ) ) ) |
118 |
115 117
|
mpbird |
⊢ ( 𝜑 → ( 𝐷 · 𝐸 ) ∼ 𝐹 ) |