Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p7.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1p7.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1p7.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1p7.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1p7.5 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
6 |
|
aks6d1c1p7.6 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
7 |
|
aks6d1c1p7.7 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
8 |
|
aks6d1c1p7.8 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
9 |
|
aks6d1c1p7.9 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
10 |
|
aks6d1c1p7.10 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
11 |
|
aks6d1c1p7.11 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
12 |
|
aks6d1c1p7.12 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
13 |
|
aks6d1c1p7.13 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
14 |
|
aks6d1c1p7.14 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
15 |
|
aks6d1c1p7.15 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
9
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
19 |
5
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
21 |
11
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
22 |
20 21 6
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
23 |
22
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) |
25 |
24
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
26 |
5 16
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
27 |
25 26
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
28 |
8 4 16 2 3 18 27
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) ) |
29 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ↑ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) ) = ( 𝐿 ↑ 𝑦 ) ) |
31 |
20
|
cmnmndd |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd ) |
33 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐿 ∈ ℕ0 ) |
35 |
27 26
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
36 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
37 |
36 6
|
mulgnn0cl |
⊢ ( ( 𝑉 ∈ Mnd ∧ 𝐿 ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ 𝑉 ) ) → ( 𝐿 ↑ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
38 |
32 34 35 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ↑ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
39 |
38 26
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
8 4 16 2 3 18 39
|
evl1vard |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ↑ 𝑦 ) ) = ( 𝐿 ↑ 𝑦 ) ) ) |
41 |
40
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ↑ 𝑦 ) ) = ( 𝐿 ↑ 𝑦 ) ) |
42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ↑ 𝑦 ) = ( 𝐿 ↑ 𝑦 ) ) |
43 |
41 42
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ↑ 𝑦 ) = ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ↑ 𝑦 ) ) ) |
44 |
30 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ↑ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ↑ 𝑦 ) ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐿 ↑ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ↑ 𝑦 ) ) ) |
46 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
47 |
17 46
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
48 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
49 |
4 2 48
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
50 |
47 49
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
51 |
50 3
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
52 |
1 51 15
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐿 ∼ 𝑋 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐿 ↑ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ↑ 𝑦 ) ) ) ) |
53 |
45 52
|
mpbird |
⊢ ( 𝜑 → 𝐿 ∼ 𝑋 ) |