Metamath Proof Explorer


Theorem aks6d1c1p7

Description: X is introspective to all positive integers. (Contributed by metakunt, 30-Apr-2025)

Ref Expression
Hypotheses aks6d1c1p7.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝑦 ) ) ) }
aks6d1c1p7.2 𝑆 = ( Poly1𝐾 )
aks6d1c1p7.3 𝐵 = ( Base ‘ 𝑆 )
aks6d1c1p7.4 𝑋 = ( var1𝐾 )
aks6d1c1p7.5 𝑉 = ( mulGrp ‘ 𝐾 )
aks6d1c1p7.6 = ( .g𝑉 )
aks6d1c1p7.7 𝑃 = ( chr ‘ 𝐾 )
aks6d1c1p7.8 𝑂 = ( eval1𝐾 )
aks6d1c1p7.9 ( 𝜑𝐾 ∈ Field )
aks6d1c1p7.10 ( 𝜑𝑃 ∈ ℙ )
aks6d1c1p7.11 ( 𝜑𝑅 ∈ ℕ )
aks6d1c1p7.12 ( 𝜑𝑁 ∈ ℕ )
aks6d1c1p7.13 ( 𝜑𝑃𝑁 )
aks6d1c1p7.14 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
aks6d1c1p7.15 ( 𝜑𝐿 ∈ ℕ )
Assertion aks6d1c1p7 ( 𝜑𝐿 𝑋 )

Proof

Step Hyp Ref Expression
1 aks6d1c1p7.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝑦 ) ) ) }
2 aks6d1c1p7.2 𝑆 = ( Poly1𝐾 )
3 aks6d1c1p7.3 𝐵 = ( Base ‘ 𝑆 )
4 aks6d1c1p7.4 𝑋 = ( var1𝐾 )
5 aks6d1c1p7.5 𝑉 = ( mulGrp ‘ 𝐾 )
6 aks6d1c1p7.6 = ( .g𝑉 )
7 aks6d1c1p7.7 𝑃 = ( chr ‘ 𝐾 )
8 aks6d1c1p7.8 𝑂 = ( eval1𝐾 )
9 aks6d1c1p7.9 ( 𝜑𝐾 ∈ Field )
10 aks6d1c1p7.10 ( 𝜑𝑃 ∈ ℙ )
11 aks6d1c1p7.11 ( 𝜑𝑅 ∈ ℕ )
12 aks6d1c1p7.12 ( 𝜑𝑁 ∈ ℕ )
13 aks6d1c1p7.13 ( 𝜑𝑃𝑁 )
14 aks6d1c1p7.14 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
15 aks6d1c1p7.15 ( 𝜑𝐿 ∈ ℕ )
16 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
17 9 fldcrngd ( 𝜑𝐾 ∈ CRing )
18 17 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing )
19 5 crngmgp ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd )
20 17 19 syl ( 𝜑𝑉 ∈ CMnd )
21 11 nnnn0d ( 𝜑𝑅 ∈ ℕ0 )
22 20 21 6 isprimroot ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑙 ) ) ) )
23 22 biimpd ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑙 ) ) ) )
24 23 imp ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑙 ) ) )
25 24 simp1d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) )
26 5 16 mgpbas ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 )
27 25 26 eleqtrrdi ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) )
28 8 4 16 2 3 18 27 evl1vard ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋𝐵 ∧ ( ( 𝑂𝑋 ) ‘ 𝑦 ) = 𝑦 ) )
29 28 simprd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝑋 ) ‘ 𝑦 ) = 𝑦 )
30 29 oveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ( ( 𝑂𝑋 ) ‘ 𝑦 ) ) = ( 𝐿 𝑦 ) )
31 20 cmnmndd ( 𝜑𝑉 ∈ Mnd )
32 31 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd )
33 15 nnnn0d ( 𝜑𝐿 ∈ ℕ0 )
34 33 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐿 ∈ ℕ0 )
35 27 26 eleqtrdi ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) )
36 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
37 36 6 mulgnn0cl ( ( 𝑉 ∈ Mnd ∧ 𝐿 ∈ ℕ0𝑦 ∈ ( Base ‘ 𝑉 ) ) → ( 𝐿 𝑦 ) ∈ ( Base ‘ 𝑉 ) )
38 32 34 35 37 syl3anc ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 𝑦 ) ∈ ( Base ‘ 𝑉 ) )
39 38 26 eleqtrrdi ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 𝑦 ) ∈ ( Base ‘ 𝐾 ) )
40 8 4 16 2 3 18 39 evl1vard ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑋𝐵 ∧ ( ( 𝑂𝑋 ) ‘ ( 𝐿 𝑦 ) ) = ( 𝐿 𝑦 ) ) )
41 40 simprd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝑋 ) ‘ ( 𝐿 𝑦 ) ) = ( 𝐿 𝑦 ) )
42 eqidd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 𝑦 ) = ( 𝐿 𝑦 ) )
43 41 42 eqtr2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 𝑦 ) = ( ( 𝑂𝑋 ) ‘ ( 𝐿 𝑦 ) ) )
44 30 43 eqtrd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐿 ( ( 𝑂𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑋 ) ‘ ( 𝐿 𝑦 ) ) )
45 44 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐿 ( ( 𝑂𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑋 ) ‘ ( 𝐿 𝑦 ) ) )
46 crngring ( 𝐾 ∈ CRing → 𝐾 ∈ Ring )
47 17 46 syl ( 𝜑𝐾 ∈ Ring )
48 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
49 4 2 48 vr1cl ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑆 ) )
50 47 49 syl ( 𝜑𝑋 ∈ ( Base ‘ 𝑆 ) )
51 50 3 eleqtrrdi ( 𝜑𝑋𝐵 )
52 1 51 15 aks6d1c1p1 ( 𝜑 → ( 𝐿 𝑋 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐿 ( ( 𝑂𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑋 ) ‘ ( 𝐿 𝑦 ) ) ) )
53 45 52 mpbird ( 𝜑𝐿 𝑋 )