Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1p7.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } |
2 |
|
aks6d1c1p7.2 |
|- S = ( Poly1 ` K ) |
3 |
|
aks6d1c1p7.3 |
|- B = ( Base ` S ) |
4 |
|
aks6d1c1p7.4 |
|- X = ( var1 ` K ) |
5 |
|
aks6d1c1p7.5 |
|- V = ( mulGrp ` K ) |
6 |
|
aks6d1c1p7.6 |
|- .^ = ( .g ` V ) |
7 |
|
aks6d1c1p7.7 |
|- P = ( chr ` K ) |
8 |
|
aks6d1c1p7.8 |
|- O = ( eval1 ` K ) |
9 |
|
aks6d1c1p7.9 |
|- ( ph -> K e. Field ) |
10 |
|
aks6d1c1p7.10 |
|- ( ph -> P e. Prime ) |
11 |
|
aks6d1c1p7.11 |
|- ( ph -> R e. NN ) |
12 |
|
aks6d1c1p7.12 |
|- ( ph -> N e. NN ) |
13 |
|
aks6d1c1p7.13 |
|- ( ph -> P || N ) |
14 |
|
aks6d1c1p7.14 |
|- ( ph -> ( N gcd R ) = 1 ) |
15 |
|
aks6d1c1p7.15 |
|- ( ph -> L e. NN ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
9
|
fldcrngd |
|- ( ph -> K e. CRing ) |
18 |
17
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> K e. CRing ) |
19 |
5
|
crngmgp |
|- ( K e. CRing -> V e. CMnd ) |
20 |
17 19
|
syl |
|- ( ph -> V e. CMnd ) |
21 |
11
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
22 |
20 21 6
|
isprimroot |
|- ( ph -> ( y e. ( V PrimRoots R ) <-> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) ) |
23 |
22
|
biimpd |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) ) |
24 |
23
|
imp |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) |
25 |
24
|
simp1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` V ) ) |
26 |
5 16
|
mgpbas |
|- ( Base ` K ) = ( Base ` V ) |
27 |
25 26
|
eleqtrrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` K ) ) |
28 |
8 4 16 2 3 18 27
|
evl1vard |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( X e. B /\ ( ( O ` X ) ` y ) = y ) ) |
29 |
28
|
simprd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` X ) ` y ) = y ) |
30 |
29
|
oveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( L .^ ( ( O ` X ) ` y ) ) = ( L .^ y ) ) |
31 |
20
|
cmnmndd |
|- ( ph -> V e. Mnd ) |
32 |
31
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> V e. Mnd ) |
33 |
15
|
nnnn0d |
|- ( ph -> L e. NN0 ) |
34 |
33
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> L e. NN0 ) |
35 |
27 26
|
eleqtrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` V ) ) |
36 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
37 |
36 6
|
mulgnn0cl |
|- ( ( V e. Mnd /\ L e. NN0 /\ y e. ( Base ` V ) ) -> ( L .^ y ) e. ( Base ` V ) ) |
38 |
32 34 35 37
|
syl3anc |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( L .^ y ) e. ( Base ` V ) ) |
39 |
38 26
|
eleqtrrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( L .^ y ) e. ( Base ` K ) ) |
40 |
8 4 16 2 3 18 39
|
evl1vard |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( X e. B /\ ( ( O ` X ) ` ( L .^ y ) ) = ( L .^ y ) ) ) |
41 |
40
|
simprd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` X ) ` ( L .^ y ) ) = ( L .^ y ) ) |
42 |
|
eqidd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( L .^ y ) = ( L .^ y ) ) |
43 |
41 42
|
eqtr2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( L .^ y ) = ( ( O ` X ) ` ( L .^ y ) ) ) |
44 |
30 43
|
eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( L .^ ( ( O ` X ) ` y ) ) = ( ( O ` X ) ` ( L .^ y ) ) ) |
45 |
44
|
ralrimiva |
|- ( ph -> A. y e. ( V PrimRoots R ) ( L .^ ( ( O ` X ) ` y ) ) = ( ( O ` X ) ` ( L .^ y ) ) ) |
46 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
47 |
17 46
|
syl |
|- ( ph -> K e. Ring ) |
48 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
49 |
4 2 48
|
vr1cl |
|- ( K e. Ring -> X e. ( Base ` S ) ) |
50 |
47 49
|
syl |
|- ( ph -> X e. ( Base ` S ) ) |
51 |
50 3
|
eleqtrrdi |
|- ( ph -> X e. B ) |
52 |
1 51 15
|
aks6d1c1p1 |
|- ( ph -> ( L .~ X <-> A. y e. ( V PrimRoots R ) ( L .^ ( ( O ` X ) ` y ) ) = ( ( O ` X ) ` ( L .^ y ) ) ) ) |
53 |
45 52
|
mpbird |
|- ( ph -> L .~ X ) |