| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c1.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } |
| 2 |
|
aks6d1c1.2 |
|- S = ( Poly1 ` K ) |
| 3 |
|
aks6d1c1.3 |
|- B = ( Base ` S ) |
| 4 |
|
aks6d1c1.4 |
|- X = ( var1 ` K ) |
| 5 |
|
aks6d1c1.5 |
|- W = ( mulGrp ` S ) |
| 6 |
|
aks6d1c1.6 |
|- V = ( mulGrp ` K ) |
| 7 |
|
aks6d1c1.7 |
|- .^ = ( .g ` V ) |
| 8 |
|
aks6d1c1.8 |
|- C = ( algSc ` S ) |
| 9 |
|
aks6d1c1.9 |
|- D = ( .g ` W ) |
| 10 |
|
aks6d1c1.10 |
|- P = ( chr ` K ) |
| 11 |
|
aks6d1c1.11 |
|- O = ( eval1 ` K ) |
| 12 |
|
aks6d1c1.12 |
|- .+ = ( +g ` S ) |
| 13 |
|
aks6d1c1.13 |
|- ( ph -> K e. Field ) |
| 14 |
|
aks6d1c1.14 |
|- ( ph -> P e. Prime ) |
| 15 |
|
aks6d1c1.15 |
|- ( ph -> R e. NN ) |
| 16 |
|
aks6d1c1.16 |
|- ( ph -> N e. NN ) |
| 17 |
|
aks6d1c1.17 |
|- ( ph -> P || N ) |
| 18 |
|
aks6d1c1.18 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 19 |
|
aks6d1c1p6.1 |
|- ( ph -> E .~ F ) |
| 20 |
|
aks6d1c1p6.2 |
|- ( ph -> L e. NN0 ) |
| 21 |
|
oveq1 |
|- ( h = 0 -> ( h D F ) = ( 0 D F ) ) |
| 22 |
21
|
breq2d |
|- ( h = 0 -> ( E .~ ( h D F ) <-> E .~ ( 0 D F ) ) ) |
| 23 |
|
oveq1 |
|- ( h = i -> ( h D F ) = ( i D F ) ) |
| 24 |
23
|
breq2d |
|- ( h = i -> ( E .~ ( h D F ) <-> E .~ ( i D F ) ) ) |
| 25 |
|
oveq1 |
|- ( h = ( i + 1 ) -> ( h D F ) = ( ( i + 1 ) D F ) ) |
| 26 |
25
|
breq2d |
|- ( h = ( i + 1 ) -> ( E .~ ( h D F ) <-> E .~ ( ( i + 1 ) D F ) ) ) |
| 27 |
|
oveq1 |
|- ( h = L -> ( h D F ) = ( L D F ) ) |
| 28 |
27
|
breq2d |
|- ( h = L -> ( E .~ ( h D F ) <-> E .~ ( L D F ) ) ) |
| 29 |
1 19
|
aks6d1c1p1rcl |
|- ( ph -> ( E e. NN /\ F e. B ) ) |
| 30 |
29
|
simprd |
|- ( ph -> F e. B ) |
| 31 |
30 3
|
eleqtrdi |
|- ( ph -> F e. ( Base ` S ) ) |
| 32 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 33 |
5 32
|
mgpbas |
|- ( Base ` S ) = ( Base ` W ) |
| 34 |
31 33
|
eleqtrdi |
|- ( ph -> F e. ( Base ` W ) ) |
| 35 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 36 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 37 |
35 36 9
|
mulg0 |
|- ( F e. ( Base ` W ) -> ( 0 D F ) = ( 0g ` W ) ) |
| 38 |
34 37
|
syl |
|- ( ph -> ( 0 D F ) = ( 0g ` W ) ) |
| 39 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 40 |
5 39
|
ringidval |
|- ( 1r ` S ) = ( 0g ` W ) |
| 41 |
40
|
eqcomi |
|- ( 0g ` W ) = ( 1r ` S ) |
| 42 |
38 41
|
eqtrdi |
|- ( ph -> ( 0 D F ) = ( 1r ` S ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 0 D F ) = ( 1r ` S ) ) |
| 44 |
43
|
fveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( O ` ( 0 D F ) ) = ( O ` ( 1r ` S ) ) ) |
| 45 |
44
|
fveq1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( 0 D F ) ) ` y ) = ( ( O ` ( 1r ` S ) ) ` y ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( 0 D F ) ) ` y ) ) = ( E .^ ( ( O ` ( 1r ` S ) ) ` y ) ) ) |
| 47 |
13
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 48 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
| 49 |
47 48
|
syl |
|- ( ph -> K e. Ring ) |
| 50 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
| 51 |
2 8 50 39
|
ply1scl1 |
|- ( K e. Ring -> ( C ` ( 1r ` K ) ) = ( 1r ` S ) ) |
| 52 |
49 51
|
syl |
|- ( ph -> ( C ` ( 1r ` K ) ) = ( 1r ` S ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( C ` ( 1r ` K ) ) = ( 1r ` S ) ) |
| 54 |
53
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1r ` S ) = ( C ` ( 1r ` K ) ) ) |
| 55 |
54
|
fveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( O ` ( 1r ` S ) ) = ( O ` ( C ` ( 1r ` K ) ) ) ) |
| 56 |
55
|
fveq1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( 1r ` S ) ) ` y ) = ( ( O ` ( C ` ( 1r ` K ) ) ) ` y ) ) |
| 57 |
56
|
oveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( 1r ` S ) ) ` y ) ) = ( E .^ ( ( O ` ( C ` ( 1r ` K ) ) ) ` y ) ) ) |
| 58 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 59 |
47
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> K e. CRing ) |
| 60 |
58 50
|
ringidcl |
|- ( K e. Ring -> ( 1r ` K ) e. ( Base ` K ) ) |
| 61 |
49 60
|
syl |
|- ( ph -> ( 1r ` K ) e. ( Base ` K ) ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1r ` K ) e. ( Base ` K ) ) |
| 63 |
6
|
crngmgp |
|- ( K e. CRing -> V e. CMnd ) |
| 64 |
47 63
|
syl |
|- ( ph -> V e. CMnd ) |
| 65 |
15
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 66 |
|
eqid |
|- ( .g ` V ) = ( .g ` V ) |
| 67 |
64 65 66
|
isprimroot |
|- ( ph -> ( y e. ( V PrimRoots R ) <-> ( y e. ( Base ` V ) /\ ( R ( .g ` V ) y ) = ( 0g ` V ) /\ A. z e. NN0 ( ( z ( .g ` V ) y ) = ( 0g ` V ) -> R || z ) ) ) ) |
| 68 |
67
|
biimpd |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( y e. ( Base ` V ) /\ ( R ( .g ` V ) y ) = ( 0g ` V ) /\ A. z e. NN0 ( ( z ( .g ` V ) y ) = ( 0g ` V ) -> R || z ) ) ) ) |
| 69 |
68
|
imp |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` V ) /\ ( R ( .g ` V ) y ) = ( 0g ` V ) /\ A. z e. NN0 ( ( z ( .g ` V ) y ) = ( 0g ` V ) -> R || z ) ) ) |
| 70 |
69
|
simp1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` V ) ) |
| 71 |
6 58
|
mgpbas |
|- ( Base ` K ) = ( Base ` V ) |
| 72 |
71
|
eqcomi |
|- ( Base ` V ) = ( Base ` K ) |
| 73 |
70 72
|
eleqtrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` K ) ) |
| 74 |
11 2 58 8 3 59 62 73
|
evl1scad |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( C ` ( 1r ` K ) ) e. B /\ ( ( O ` ( C ` ( 1r ` K ) ) ) ` y ) = ( 1r ` K ) ) ) |
| 75 |
74
|
simprd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( C ` ( 1r ` K ) ) ) ` y ) = ( 1r ` K ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( C ` ( 1r ` K ) ) ) ` y ) ) = ( E .^ ( 1r ` K ) ) ) |
| 77 |
64
|
cmnmndd |
|- ( ph -> V e. Mnd ) |
| 78 |
29
|
simpld |
|- ( ph -> E e. NN ) |
| 79 |
78
|
nnnn0d |
|- ( ph -> E e. NN0 ) |
| 80 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 81 |
6 50
|
ringidval |
|- ( 1r ` K ) = ( 0g ` V ) |
| 82 |
80 7 81
|
mulgnn0z |
|- ( ( V e. Mnd /\ E e. NN0 ) -> ( E .^ ( 1r ` K ) ) = ( 1r ` K ) ) |
| 83 |
77 79 82
|
syl2anc |
|- ( ph -> ( E .^ ( 1r ` K ) ) = ( 1r ` K ) ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( 1r ` K ) ) = ( 1r ` K ) ) |
| 85 |
77
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> V e. Mnd ) |
| 86 |
79
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> E e. NN0 ) |
| 87 |
71 7
|
mulgnn0cl |
|- ( ( V e. Mnd /\ E e. NN0 /\ y e. ( Base ` K ) ) -> ( E .^ y ) e. ( Base ` K ) ) |
| 88 |
85 86 73 87
|
syl3anc |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ y ) e. ( Base ` K ) ) |
| 89 |
11 2 58 8 3 59 62 88
|
evl1scad |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( C ` ( 1r ` K ) ) e. B /\ ( ( O ` ( C ` ( 1r ` K ) ) ) ` ( E .^ y ) ) = ( 1r ` K ) ) ) |
| 90 |
89
|
simprd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( C ` ( 1r ` K ) ) ) ` ( E .^ y ) ) = ( 1r ` K ) ) |
| 91 |
90
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1r ` K ) = ( ( O ` ( C ` ( 1r ` K ) ) ) ` ( E .^ y ) ) ) |
| 92 |
76 84 91
|
3eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( C ` ( 1r ` K ) ) ) ` y ) ) = ( ( O ` ( C ` ( 1r ` K ) ) ) ` ( E .^ y ) ) ) |
| 93 |
53
|
fveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( O ` ( C ` ( 1r ` K ) ) ) = ( O ` ( 1r ` S ) ) ) |
| 94 |
93
|
fveq1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( C ` ( 1r ` K ) ) ) ` ( E .^ y ) ) = ( ( O ` ( 1r ` S ) ) ` ( E .^ y ) ) ) |
| 95 |
57 92 94
|
3eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( 1r ` S ) ) ` y ) ) = ( ( O ` ( 1r ` S ) ) ` ( E .^ y ) ) ) |
| 96 |
43
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1r ` S ) = ( 0 D F ) ) |
| 97 |
96
|
fveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( O ` ( 1r ` S ) ) = ( O ` ( 0 D F ) ) ) |
| 98 |
97
|
fveq1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( 1r ` S ) ) ` ( E .^ y ) ) = ( ( O ` ( 0 D F ) ) ` ( E .^ y ) ) ) |
| 99 |
46 95 98
|
3eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( 0 D F ) ) ` y ) ) = ( ( O ` ( 0 D F ) ) ` ( E .^ y ) ) ) |
| 100 |
99
|
ralrimiva |
|- ( ph -> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` ( 0 D F ) ) ` y ) ) = ( ( O ` ( 0 D F ) ) ` ( E .^ y ) ) ) |
| 101 |
2
|
ply1ring |
|- ( K e. Ring -> S e. Ring ) |
| 102 |
49 101
|
syl |
|- ( ph -> S e. Ring ) |
| 103 |
32 39
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
| 104 |
102 103
|
syl |
|- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 105 |
42
|
eqcomd |
|- ( ph -> ( 1r ` S ) = ( 0 D F ) ) |
| 106 |
3
|
a1i |
|- ( ph -> B = ( Base ` S ) ) |
| 107 |
106
|
eqcomd |
|- ( ph -> ( Base ` S ) = B ) |
| 108 |
105 107
|
eleq12d |
|- ( ph -> ( ( 1r ` S ) e. ( Base ` S ) <-> ( 0 D F ) e. B ) ) |
| 109 |
104 108
|
mpbid |
|- ( ph -> ( 0 D F ) e. B ) |
| 110 |
1 109 78
|
aks6d1c1p1 |
|- ( ph -> ( E .~ ( 0 D F ) <-> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` ( 0 D F ) ) ` y ) ) = ( ( O ` ( 0 D F ) ) ` ( E .^ y ) ) ) ) |
| 111 |
100 110
|
mpbird |
|- ( ph -> E .~ ( 0 D F ) ) |
| 112 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> K e. Field ) |
| 113 |
14
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> P e. Prime ) |
| 114 |
15
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> R e. NN ) |
| 115 |
18
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> ( N gcd R ) = 1 ) |
| 116 |
17
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> P || N ) |
| 117 |
|
simpr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> E .~ ( i D F ) ) |
| 118 |
19
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> E .~ F ) |
| 119 |
1 2 3 4 5 6 7 8 9 10 11 12 112 113 114 115 116 117 118
|
aks6d1c1p4 |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> E .~ ( ( i D F ) ( +g ` W ) F ) ) |
| 120 |
5
|
ringmgp |
|- ( S e. Ring -> W e. Mnd ) |
| 121 |
102 120
|
syl |
|- ( ph -> W e. Mnd ) |
| 122 |
121
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> W e. Mnd ) |
| 123 |
122
|
adantr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> W e. Mnd ) |
| 124 |
|
simplr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> i e. NN0 ) |
| 125 |
33
|
a1i |
|- ( ph -> ( Base ` S ) = ( Base ` W ) ) |
| 126 |
106 125
|
eqtrd |
|- ( ph -> B = ( Base ` W ) ) |
| 127 |
126
|
eleq2d |
|- ( ph -> ( F e. B <-> F e. ( Base ` W ) ) ) |
| 128 |
30 127
|
mpbid |
|- ( ph -> F e. ( Base ` W ) ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ i e. NN0 ) -> F e. ( Base ` W ) ) |
| 130 |
129
|
adantr |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> F e. ( Base ` W ) ) |
| 131 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 132 |
35 9 131
|
mulgnn0p1 |
|- ( ( W e. Mnd /\ i e. NN0 /\ F e. ( Base ` W ) ) -> ( ( i + 1 ) D F ) = ( ( i D F ) ( +g ` W ) F ) ) |
| 133 |
123 124 130 132
|
syl3anc |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> ( ( i + 1 ) D F ) = ( ( i D F ) ( +g ` W ) F ) ) |
| 134 |
119 133
|
breqtrrd |
|- ( ( ( ph /\ i e. NN0 ) /\ E .~ ( i D F ) ) -> E .~ ( ( i + 1 ) D F ) ) |
| 135 |
22 24 26 28 111 134
|
nn0indd |
|- ( ( ph /\ L e. NN0 ) -> E .~ ( L D F ) ) |
| 136 |
20 135
|
mpdan |
|- ( ph -> E .~ ( L D F ) ) |