Metamath Proof Explorer


Theorem aks6d1c1p6

Description: If a polynomials F is introspective to E , then so are its powers. (Contributed by metakunt, 30-Apr-2025)

Ref Expression
Hypotheses aks6d1c1.1 ˙ = e f | e f B y V PrimRoots R e × ˙ O f y = O f e × ˙ y
aks6d1c1.2 S = Poly 1 K
aks6d1c1.3 B = Base S
aks6d1c1.4 X = var 1 K
aks6d1c1.5 W = mulGrp S
aks6d1c1.6 V = mulGrp K
aks6d1c1.7 × ˙ = V
aks6d1c1.8 C = algSc S
aks6d1c1.9 D = W
aks6d1c1.10 P = chr K
aks6d1c1.11 O = eval 1 K
aks6d1c1.12 + ˙ = + S
aks6d1c1.13 φ K Field
aks6d1c1.14 φ P
aks6d1c1.15 φ R
aks6d1c1.16 φ N
aks6d1c1.17 φ P N
aks6d1c1.18 φ N gcd R = 1
aks6d1c1p6.1 φ E ˙ F
aks6d1c1p6.2 φ L 0
Assertion aks6d1c1p6 φ E ˙ L D F

Proof

Step Hyp Ref Expression
1 aks6d1c1.1 ˙ = e f | e f B y V PrimRoots R e × ˙ O f y = O f e × ˙ y
2 aks6d1c1.2 S = Poly 1 K
3 aks6d1c1.3 B = Base S
4 aks6d1c1.4 X = var 1 K
5 aks6d1c1.5 W = mulGrp S
6 aks6d1c1.6 V = mulGrp K
7 aks6d1c1.7 × ˙ = V
8 aks6d1c1.8 C = algSc S
9 aks6d1c1.9 D = W
10 aks6d1c1.10 P = chr K
11 aks6d1c1.11 O = eval 1 K
12 aks6d1c1.12 + ˙ = + S
13 aks6d1c1.13 φ K Field
14 aks6d1c1.14 φ P
15 aks6d1c1.15 φ R
16 aks6d1c1.16 φ N
17 aks6d1c1.17 φ P N
18 aks6d1c1.18 φ N gcd R = 1
19 aks6d1c1p6.1 φ E ˙ F
20 aks6d1c1p6.2 φ L 0
21 oveq1 h = 0 h D F = 0 D F
22 21 breq2d h = 0 E ˙ h D F E ˙ 0 D F
23 oveq1 h = i h D F = i D F
24 23 breq2d h = i E ˙ h D F E ˙ i D F
25 oveq1 h = i + 1 h D F = i + 1 D F
26 25 breq2d h = i + 1 E ˙ h D F E ˙ i + 1 D F
27 oveq1 h = L h D F = L D F
28 27 breq2d h = L E ˙ h D F E ˙ L D F
29 1 19 aks6d1c1p1rcl φ E F B
30 29 simprd φ F B
31 30 3 eleqtrdi φ F Base S
32 eqid Base S = Base S
33 5 32 mgpbas Base S = Base W
34 31 33 eleqtrdi φ F Base W
35 eqid Base W = Base W
36 eqid 0 W = 0 W
37 35 36 9 mulg0 F Base W 0 D F = 0 W
38 34 37 syl φ 0 D F = 0 W
39 eqid 1 S = 1 S
40 5 39 ringidval 1 S = 0 W
41 40 eqcomi 0 W = 1 S
42 38 41 eqtrdi φ 0 D F = 1 S
43 42 adantr φ y V PrimRoots R 0 D F = 1 S
44 43 fveq2d φ y V PrimRoots R O 0 D F = O 1 S
45 44 fveq1d φ y V PrimRoots R O 0 D F y = O 1 S y
46 45 oveq2d φ y V PrimRoots R E × ˙ O 0 D F y = E × ˙ O 1 S y
47 13 fldcrngd φ K CRing
48 crngring K CRing K Ring
49 47 48 syl φ K Ring
50 eqid 1 K = 1 K
51 2 8 50 39 ply1scl1 K Ring C 1 K = 1 S
52 49 51 syl φ C 1 K = 1 S
53 52 adantr φ y V PrimRoots R C 1 K = 1 S
54 53 eqcomd φ y V PrimRoots R 1 S = C 1 K
55 54 fveq2d φ y V PrimRoots R O 1 S = O C 1 K
56 55 fveq1d φ y V PrimRoots R O 1 S y = O C 1 K y
57 56 oveq2d φ y V PrimRoots R E × ˙ O 1 S y = E × ˙ O C 1 K y
58 eqid Base K = Base K
59 47 adantr φ y V PrimRoots R K CRing
60 58 50 ringidcl K Ring 1 K Base K
61 49 60 syl φ 1 K Base K
62 61 adantr φ y V PrimRoots R 1 K Base K
63 6 crngmgp K CRing V CMnd
64 47 63 syl φ V CMnd
65 15 nnnn0d φ R 0
66 eqid V = V
67 64 65 66 isprimroot φ y V PrimRoots R y Base V R V y = 0 V z 0 z V y = 0 V R z
68 67 biimpd φ y V PrimRoots R y Base V R V y = 0 V z 0 z V y = 0 V R z
69 68 imp φ y V PrimRoots R y Base V R V y = 0 V z 0 z V y = 0 V R z
70 69 simp1d φ y V PrimRoots R y Base V
71 6 58 mgpbas Base K = Base V
72 71 eqcomi Base V = Base K
73 70 72 eleqtrdi φ y V PrimRoots R y Base K
74 11 2 58 8 3 59 62 73 evl1scad φ y V PrimRoots R C 1 K B O C 1 K y = 1 K
75 74 simprd φ y V PrimRoots R O C 1 K y = 1 K
76 75 oveq2d φ y V PrimRoots R E × ˙ O C 1 K y = E × ˙ 1 K
77 64 cmnmndd φ V Mnd
78 29 simpld φ E
79 78 nnnn0d φ E 0
80 eqid Base V = Base V
81 6 50 ringidval 1 K = 0 V
82 80 7 81 mulgnn0z V Mnd E 0 E × ˙ 1 K = 1 K
83 77 79 82 syl2anc φ E × ˙ 1 K = 1 K
84 83 adantr φ y V PrimRoots R E × ˙ 1 K = 1 K
85 77 adantr φ y V PrimRoots R V Mnd
86 79 adantr φ y V PrimRoots R E 0
87 71 7 mulgnn0cl V Mnd E 0 y Base K E × ˙ y Base K
88 85 86 73 87 syl3anc φ y V PrimRoots R E × ˙ y Base K
89 11 2 58 8 3 59 62 88 evl1scad φ y V PrimRoots R C 1 K B O C 1 K E × ˙ y = 1 K
90 89 simprd φ y V PrimRoots R O C 1 K E × ˙ y = 1 K
91 90 eqcomd φ y V PrimRoots R 1 K = O C 1 K E × ˙ y
92 76 84 91 3eqtrd φ y V PrimRoots R E × ˙ O C 1 K y = O C 1 K E × ˙ y
93 53 fveq2d φ y V PrimRoots R O C 1 K = O 1 S
94 93 fveq1d φ y V PrimRoots R O C 1 K E × ˙ y = O 1 S E × ˙ y
95 57 92 94 3eqtrd φ y V PrimRoots R E × ˙ O 1 S y = O 1 S E × ˙ y
96 43 eqcomd φ y V PrimRoots R 1 S = 0 D F
97 96 fveq2d φ y V PrimRoots R O 1 S = O 0 D F
98 97 fveq1d φ y V PrimRoots R O 1 S E × ˙ y = O 0 D F E × ˙ y
99 46 95 98 3eqtrd φ y V PrimRoots R E × ˙ O 0 D F y = O 0 D F E × ˙ y
100 99 ralrimiva φ y V PrimRoots R E × ˙ O 0 D F y = O 0 D F E × ˙ y
101 2 ply1ring K Ring S Ring
102 49 101 syl φ S Ring
103 32 39 ringidcl S Ring 1 S Base S
104 102 103 syl φ 1 S Base S
105 42 eqcomd φ 1 S = 0 D F
106 3 a1i φ B = Base S
107 106 eqcomd φ Base S = B
108 105 107 eleq12d φ 1 S Base S 0 D F B
109 104 108 mpbid φ 0 D F B
110 1 109 78 aks6d1c1p1 φ E ˙ 0 D F y V PrimRoots R E × ˙ O 0 D F y = O 0 D F E × ˙ y
111 100 110 mpbird φ E ˙ 0 D F
112 13 ad2antrr φ i 0 E ˙ i D F K Field
113 14 ad2antrr φ i 0 E ˙ i D F P
114 15 ad2antrr φ i 0 E ˙ i D F R
115 18 ad2antrr φ i 0 E ˙ i D F N gcd R = 1
116 17 ad2antrr φ i 0 E ˙ i D F P N
117 simpr φ i 0 E ˙ i D F E ˙ i D F
118 19 ad2antrr φ i 0 E ˙ i D F E ˙ F
119 1 2 3 4 5 6 7 8 9 10 11 12 112 113 114 115 116 117 118 aks6d1c1p4 φ i 0 E ˙ i D F E ˙ i D F + W F
120 5 ringmgp S Ring W Mnd
121 102 120 syl φ W Mnd
122 121 adantr φ i 0 W Mnd
123 122 adantr φ i 0 E ˙ i D F W Mnd
124 simplr φ i 0 E ˙ i D F i 0
125 33 a1i φ Base S = Base W
126 106 125 eqtrd φ B = Base W
127 126 eleq2d φ F B F Base W
128 30 127 mpbid φ F Base W
129 128 adantr φ i 0 F Base W
130 129 adantr φ i 0 E ˙ i D F F Base W
131 eqid + W = + W
132 35 9 131 mulgnn0p1 W Mnd i 0 F Base W i + 1 D F = i D F + W F
133 123 124 130 132 syl3anc φ i 0 E ˙ i D F i + 1 D F = i D F + W F
134 119 133 breqtrrd φ i 0 E ˙ i D F E ˙ i + 1 D F
135 22 24 26 28 111 134 nn0indd φ L 0 E ˙ L D F
136 20 135 mpdan φ E ˙ L D F