Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
10 |
|
aks6d1c1.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
11 |
|
aks6d1c1.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
12 |
|
aks6d1c1.12 |
⊢ + = ( +g ‘ 𝑆 ) |
13 |
|
aks6d1c1.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
14 |
|
aks6d1c1.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
15 |
|
aks6d1c1.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
|
aks6d1c1.16 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
17 |
|
aks6d1c1.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
18 |
|
aks6d1c1.18 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
19 |
|
aks6d1c1p6.1 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐹 ) |
20 |
|
aks6d1c1p6.2 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
21 |
|
oveq1 |
⊢ ( ℎ = 0 → ( ℎ 𝐷 𝐹 ) = ( 0 𝐷 𝐹 ) ) |
22 |
21
|
breq2d |
⊢ ( ℎ = 0 → ( 𝐸 ∼ ( ℎ 𝐷 𝐹 ) ↔ 𝐸 ∼ ( 0 𝐷 𝐹 ) ) ) |
23 |
|
oveq1 |
⊢ ( ℎ = 𝑖 → ( ℎ 𝐷 𝐹 ) = ( 𝑖 𝐷 𝐹 ) ) |
24 |
23
|
breq2d |
⊢ ( ℎ = 𝑖 → ( 𝐸 ∼ ( ℎ 𝐷 𝐹 ) ↔ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) ) |
25 |
|
oveq1 |
⊢ ( ℎ = ( 𝑖 + 1 ) → ( ℎ 𝐷 𝐹 ) = ( ( 𝑖 + 1 ) 𝐷 𝐹 ) ) |
26 |
25
|
breq2d |
⊢ ( ℎ = ( 𝑖 + 1 ) → ( 𝐸 ∼ ( ℎ 𝐷 𝐹 ) ↔ 𝐸 ∼ ( ( 𝑖 + 1 ) 𝐷 𝐹 ) ) ) |
27 |
|
oveq1 |
⊢ ( ℎ = 𝐿 → ( ℎ 𝐷 𝐹 ) = ( 𝐿 𝐷 𝐹 ) ) |
28 |
27
|
breq2d |
⊢ ( ℎ = 𝐿 → ( 𝐸 ∼ ( ℎ 𝐷 𝐹 ) ↔ 𝐸 ∼ ( 𝐿 𝐷 𝐹 ) ) ) |
29 |
1 19
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
30 |
29
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
31 |
30 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑆 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
33 |
5 32
|
mgpbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑊 ) |
34 |
31 33
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑊 ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
37 |
35 36 9
|
mulg0 |
⊢ ( 𝐹 ∈ ( Base ‘ 𝑊 ) → ( 0 𝐷 𝐹 ) = ( 0g ‘ 𝑊 ) ) |
38 |
34 37
|
syl |
⊢ ( 𝜑 → ( 0 𝐷 𝐹 ) = ( 0g ‘ 𝑊 ) ) |
39 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
40 |
5 39
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑊 ) |
41 |
40
|
eqcomi |
⊢ ( 0g ‘ 𝑊 ) = ( 1r ‘ 𝑆 ) |
42 |
38 41
|
eqtrdi |
⊢ ( 𝜑 → ( 0 𝐷 𝐹 ) = ( 1r ‘ 𝑆 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 0 𝐷 𝐹 ) = ( 1r ‘ 𝑆 ) ) |
44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) = ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ) |
45 |
44
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ 𝑦 ) ) |
46 |
45
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ 𝑦 ) ) ) |
47 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
48 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
50 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
51 |
2 8 50 39
|
ply1scl1 |
⊢ ( 𝐾 ∈ Ring → ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝑆 ) ) |
52 |
49 51
|
syl |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝑆 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝑆 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1r ‘ 𝑆 ) = ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) |
55 |
54
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ) |
56 |
55
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ 𝑦 ) = ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ 𝑦 ) ) |
57 |
56
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ 𝑦 ) ) ) |
58 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
59 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
60 |
58 50
|
ringidcl |
⊢ ( 𝐾 ∈ Ring → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
49 60
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1r ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
64 |
47 63
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
65 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
66 |
|
eqid |
⊢ ( .g ‘ 𝑉 ) = ( .g ‘ 𝑉 ) |
67 |
64 65 66
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑧 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑧 ) ) ) ) |
68 |
67
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑧 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑧 ) ) ) ) |
69 |
68
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑧 ( .g ‘ 𝑉 ) 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑧 ) ) ) |
70 |
69
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
71 |
6 58
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
72 |
71
|
eqcomi |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝐾 ) |
73 |
70 72
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
74 |
11 2 58 8 3 59 62 73
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ 𝑦 ) = ( 1r ‘ 𝐾 ) ) ) |
75 |
74
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ 𝑦 ) = ( 1r ‘ 𝐾 ) ) |
76 |
75
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ 𝑦 ) ) = ( 𝐸 ↑ ( 1r ‘ 𝐾 ) ) ) |
77 |
64
|
cmnmndd |
⊢ ( 𝜑 → 𝑉 ∈ Mnd ) |
78 |
29
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
79 |
78
|
nnnn0d |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
80 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
81 |
6 50
|
ringidval |
⊢ ( 1r ‘ 𝐾 ) = ( 0g ‘ 𝑉 ) |
82 |
80 7 81
|
mulgnn0z |
⊢ ( ( 𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0 ) → ( 𝐸 ↑ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
83 |
77 79 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↑ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( 1r ‘ 𝐾 ) ) = ( 1r ‘ 𝐾 ) ) |
85 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑉 ∈ Mnd ) |
86 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐸 ∈ ℕ0 ) |
87 |
71 7
|
mulgnn0cl |
⊢ ( ( 𝑉 ∈ Mnd ∧ 𝐸 ∈ ℕ0 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐸 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
88 |
85 86 73 87
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
89 |
11 2 58 8 3 59 62 88
|
evl1scad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( 1r ‘ 𝐾 ) ) ) |
90 |
89
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( 1r ‘ 𝐾 ) ) |
91 |
90
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1r ‘ 𝐾 ) = ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
92 |
76 84 91
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
93 |
53
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) = ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ) |
94 |
93
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 𝐶 ‘ ( 1r ‘ 𝐾 ) ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
95 |
57 92 94
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
96 |
43
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1r ‘ 𝑆 ) = ( 0 𝐷 𝐹 ) ) |
97 |
96
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) = ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ) |
98 |
97
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ ( 1r ‘ 𝑆 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) = ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
99 |
46 95 98
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝐸 ↑ ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
100 |
99
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) |
101 |
2
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → 𝑆 ∈ Ring ) |
102 |
49 101
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
103 |
32 39
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
104 |
102 103
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
105 |
42
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 0 𝐷 𝐹 ) ) |
106 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) |
107 |
106
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = 𝐵 ) |
108 |
105 107
|
eleq12d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ↔ ( 0 𝐷 𝐹 ) ∈ 𝐵 ) ) |
109 |
104 108
|
mpbid |
⊢ ( 𝜑 → ( 0 𝐷 𝐹 ) ∈ 𝐵 ) |
110 |
1 109 78
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 𝐸 ∼ ( 0 𝐷 𝐹 ) ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝐸 ↑ ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ ( 0 𝐷 𝐹 ) ) ‘ ( 𝐸 ↑ 𝑦 ) ) ) ) |
111 |
100 110
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∼ ( 0 𝐷 𝐹 ) ) |
112 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝐾 ∈ Field ) |
113 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝑃 ∈ ℙ ) |
114 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝑅 ∈ ℕ ) |
115 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
116 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝑃 ∥ 𝑁 ) |
117 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) |
118 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝐸 ∼ 𝐹 ) |
119 |
1 2 3 4 5 6 7 8 9 10 11 12 112 113 114 115 116 117 118
|
aks6d1c1p4 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝐸 ∼ ( ( 𝑖 𝐷 𝐹 ) ( +g ‘ 𝑊 ) 𝐹 ) ) |
120 |
5
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → 𝑊 ∈ Mnd ) |
121 |
102 120
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑊 ∈ Mnd ) |
123 |
122
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝑊 ∈ Mnd ) |
124 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝑖 ∈ ℕ0 ) |
125 |
33
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) |
126 |
106 125
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑊 ) ) |
127 |
126
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 ∈ ( Base ‘ 𝑊 ) ) ) |
128 |
30 127
|
mpbid |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑊 ) ) |
129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐹 ∈ ( Base ‘ 𝑊 ) ) |
130 |
129
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝐹 ∈ ( Base ‘ 𝑊 ) ) |
131 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
132 |
35 9 131
|
mulgnn0p1 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑖 ∈ ℕ0 ∧ 𝐹 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑖 + 1 ) 𝐷 𝐹 ) = ( ( 𝑖 𝐷 𝐹 ) ( +g ‘ 𝑊 ) 𝐹 ) ) |
133 |
123 124 130 132
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → ( ( 𝑖 + 1 ) 𝐷 𝐹 ) = ( ( 𝑖 𝐷 𝐹 ) ( +g ‘ 𝑊 ) 𝐹 ) ) |
134 |
119 133
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝐸 ∼ ( 𝑖 𝐷 𝐹 ) ) → 𝐸 ∼ ( ( 𝑖 + 1 ) 𝐷 𝐹 ) ) |
135 |
22 24 26 28 111 134
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ℕ0 ) → 𝐸 ∼ ( 𝐿 𝐷 𝐹 ) ) |
136 |
20 135
|
mpdan |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝐿 𝐷 𝐹 ) ) |