Metamath Proof Explorer


Theorem aks6d1c1p8

Description: If a number E is introspective to F , then so are its powers. (Contributed by metakunt, 30-Apr-2025)

Ref Expression
Hypotheses aks6d1c1.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝑦 ) ) ) }
aks6d1c1.2 𝑆 = ( Poly1𝐾 )
aks6d1c1.3 𝐵 = ( Base ‘ 𝑆 )
aks6d1c1.4 𝑋 = ( var1𝐾 )
aks6d1c1.5 𝑊 = ( mulGrp ‘ 𝑆 )
aks6d1c1.6 𝑉 = ( mulGrp ‘ 𝐾 )
aks6d1c1.7 = ( .g𝑉 )
aks6d1c1.8 𝐶 = ( algSc ‘ 𝑆 )
aks6d1c1.9 𝐷 = ( .g𝑊 )
aks6d1c1.10 𝑃 = ( chr ‘ 𝐾 )
aks6d1c1.11 𝑂 = ( eval1𝐾 )
aks6d1c1.12 + = ( +g𝑆 )
aks6d1c1.13 ( 𝜑𝐾 ∈ Field )
aks6d1c1.14 ( 𝜑𝑃 ∈ ℙ )
aks6d1c1.15 ( 𝜑𝑅 ∈ ℕ )
aks6d1c1.16 ( 𝜑𝑁 ∈ ℕ )
aks6d1c1.17 ( 𝜑𝑃𝑁 )
aks6d1c1.18 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
aks6d1c1p8.1 ( 𝜑𝐸 𝐹 )
aks6d1c1p8.2 ( 𝜑𝐿 ∈ ℕ0 )
aks6d1c1p8.3 ( 𝜑 → ( 𝐸 gcd 𝑅 ) = 1 )
Assertion aks6d1c1p8 ( 𝜑 → ( 𝐸𝐿 ) 𝐹 )

Proof

Step Hyp Ref Expression
1 aks6d1c1.1 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 ∈ ℕ ∧ 𝑓𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ( ( 𝑂𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂𝑓 ) ‘ ( 𝑒 𝑦 ) ) ) }
2 aks6d1c1.2 𝑆 = ( Poly1𝐾 )
3 aks6d1c1.3 𝐵 = ( Base ‘ 𝑆 )
4 aks6d1c1.4 𝑋 = ( var1𝐾 )
5 aks6d1c1.5 𝑊 = ( mulGrp ‘ 𝑆 )
6 aks6d1c1.6 𝑉 = ( mulGrp ‘ 𝐾 )
7 aks6d1c1.7 = ( .g𝑉 )
8 aks6d1c1.8 𝐶 = ( algSc ‘ 𝑆 )
9 aks6d1c1.9 𝐷 = ( .g𝑊 )
10 aks6d1c1.10 𝑃 = ( chr ‘ 𝐾 )
11 aks6d1c1.11 𝑂 = ( eval1𝐾 )
12 aks6d1c1.12 + = ( +g𝑆 )
13 aks6d1c1.13 ( 𝜑𝐾 ∈ Field )
14 aks6d1c1.14 ( 𝜑𝑃 ∈ ℙ )
15 aks6d1c1.15 ( 𝜑𝑅 ∈ ℕ )
16 aks6d1c1.16 ( 𝜑𝑁 ∈ ℕ )
17 aks6d1c1.17 ( 𝜑𝑃𝑁 )
18 aks6d1c1.18 ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 )
19 aks6d1c1p8.1 ( 𝜑𝐸 𝐹 )
20 aks6d1c1p8.2 ( 𝜑𝐿 ∈ ℕ0 )
21 aks6d1c1p8.3 ( 𝜑 → ( 𝐸 gcd 𝑅 ) = 1 )
22 oveq2 ( = 0 → ( 𝐸 ) = ( 𝐸 ↑ 0 ) )
23 22 breq1d ( = 0 → ( ( 𝐸 ) 𝐹 ↔ ( 𝐸 ↑ 0 ) 𝐹 ) )
24 oveq2 ( = 𝑖 → ( 𝐸 ) = ( 𝐸𝑖 ) )
25 24 breq1d ( = 𝑖 → ( ( 𝐸 ) 𝐹 ↔ ( 𝐸𝑖 ) 𝐹 ) )
26 oveq2 ( = ( 𝑖 + 1 ) → ( 𝐸 ) = ( 𝐸 ↑ ( 𝑖 + 1 ) ) )
27 26 breq1d ( = ( 𝑖 + 1 ) → ( ( 𝐸 ) 𝐹 ↔ ( 𝐸 ↑ ( 𝑖 + 1 ) ) 𝐹 ) )
28 oveq2 ( = 𝐿 → ( 𝐸 ) = ( 𝐸𝐿 ) )
29 28 breq1d ( = 𝐿 → ( ( 𝐸 ) 𝐹 ↔ ( 𝐸𝐿 ) 𝐹 ) )
30 1 19 aks6d1c1p1rcl ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹𝐵 ) )
31 30 simpld ( 𝜑𝐸 ∈ ℕ )
32 31 nncnd ( 𝜑𝐸 ∈ ℂ )
33 32 exp0d ( 𝜑 → ( 𝐸 ↑ 0 ) = 1 )
34 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
35 13 fldcrngd ( 𝜑𝐾 ∈ CRing )
36 35 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing )
37 6 crngmgp ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd )
38 35 37 syl ( 𝜑𝑉 ∈ CMnd )
39 15 nnnn0d ( 𝜑𝑅 ∈ ℕ0 )
40 38 39 7 isprimroot ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑙 ) ) ) )
41 40 biimpd ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑙 ) ) ) )
42 41 imp ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 𝑦 ) = ( 0g𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 𝑦 ) = ( 0g𝑉 ) → 𝑅𝑙 ) ) )
43 42 simp1d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) )
44 6 34 mgpbas ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 )
45 43 44 eleqtrrdi ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) )
46 30 simprd ( 𝜑𝐹𝐵 )
47 46 adantr ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹𝐵 )
48 11 2 34 3 36 45 47 fveval1fvcl ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) )
49 48 44 eleqtrdi ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) )
50 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
51 50 7 mulg1 ( ( ( 𝑂𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) → ( 1 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ 𝑦 ) )
52 49 51 syl ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ 𝑦 ) )
53 50 7 mulg1 ( 𝑦 ∈ ( Base ‘ 𝑉 ) → ( 1 𝑦 ) = 𝑦 )
54 43 53 syl ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1 𝑦 ) = 𝑦 )
55 54 eqcomd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 = ( 1 𝑦 ) )
56 55 fveq2d ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂𝐹 ) ‘ 𝑦 ) = ( ( 𝑂𝐹 ) ‘ ( 1 𝑦 ) ) )
57 52 56 eqtrd ( ( 𝜑𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 1 𝑦 ) ) )
58 57 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 1 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 1 𝑦 ) ) )
59 1nn 1 ∈ ℕ
60 59 a1i ( 𝜑 → 1 ∈ ℕ )
61 1 46 60 aks6d1c1p1 ( 𝜑 → ( 1 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 1 ( ( 𝑂𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂𝐹 ) ‘ ( 1 𝑦 ) ) ) )
62 58 61 mpbird ( 𝜑 → 1 𝐹 )
63 33 62 eqbrtrd ( 𝜑 → ( 𝐸 ↑ 0 ) 𝐹 )
64 32 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝐸 ∈ ℂ )
65 1nn0 1 ∈ ℕ0
66 65 a1i ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 1 ∈ ℕ0 )
67 simplr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝑖 ∈ ℕ0 )
68 64 66 67 expaddd ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( 𝐸 ↑ ( 𝑖 + 1 ) ) = ( ( 𝐸𝑖 ) · ( 𝐸 ↑ 1 ) ) )
69 64 exp1d ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( 𝐸 ↑ 1 ) = 𝐸 )
70 69 oveq2d ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( ( 𝐸𝑖 ) · ( 𝐸 ↑ 1 ) ) = ( ( 𝐸𝑖 ) · 𝐸 ) )
71 68 70 eqtrd ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( 𝐸 ↑ ( 𝑖 + 1 ) ) = ( ( 𝐸𝑖 ) · 𝐸 ) )
72 13 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝐾 ∈ Field )
73 14 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝑃 ∈ ℙ )
74 15 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝑅 ∈ ℕ )
75 21 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( 𝐸 gcd 𝑅 ) = 1 )
76 17 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝑃𝑁 )
77 simpr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( 𝐸𝑖 ) 𝐹 )
78 19 ad2antrr ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → 𝐸 𝐹 )
79 1 2 3 4 5 6 7 8 10 11 12 72 73 74 75 76 77 78 aks6d1c1p5 ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( ( 𝐸𝑖 ) · 𝐸 ) 𝐹 )
80 71 79 eqbrtrd ( ( ( 𝜑𝑖 ∈ ℕ0 ) ∧ ( 𝐸𝑖 ) 𝐹 ) → ( 𝐸 ↑ ( 𝑖 + 1 ) ) 𝐹 )
81 23 25 27 29 63 80 nn0indd ( ( 𝜑𝐿 ∈ ℕ0 ) → ( 𝐸𝐿 ) 𝐹 )
82 20 81 mpdan ( 𝜑 → ( 𝐸𝐿 ) 𝐹 )