Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
10 |
|
aks6d1c1.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
11 |
|
aks6d1c1.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
12 |
|
aks6d1c1.12 |
⊢ + = ( +g ‘ 𝑆 ) |
13 |
|
aks6d1c1.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
14 |
|
aks6d1c1.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
15 |
|
aks6d1c1.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
|
aks6d1c1.16 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
17 |
|
aks6d1c1.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
18 |
|
aks6d1c1.18 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
19 |
|
aks6d1c1p8.1 |
⊢ ( 𝜑 → 𝐸 ∼ 𝐹 ) |
20 |
|
aks6d1c1p8.2 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
21 |
|
aks6d1c1p8.3 |
⊢ ( 𝜑 → ( 𝐸 gcd 𝑅 ) = 1 ) |
22 |
|
oveq2 |
⊢ ( ℎ = 0 → ( 𝐸 ↑ ℎ ) = ( 𝐸 ↑ 0 ) ) |
23 |
22
|
breq1d |
⊢ ( ℎ = 0 → ( ( 𝐸 ↑ ℎ ) ∼ 𝐹 ↔ ( 𝐸 ↑ 0 ) ∼ 𝐹 ) ) |
24 |
|
oveq2 |
⊢ ( ℎ = 𝑖 → ( 𝐸 ↑ ℎ ) = ( 𝐸 ↑ 𝑖 ) ) |
25 |
24
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( 𝐸 ↑ ℎ ) ∼ 𝐹 ↔ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) ) |
26 |
|
oveq2 |
⊢ ( ℎ = ( 𝑖 + 1 ) → ( 𝐸 ↑ ℎ ) = ( 𝐸 ↑ ( 𝑖 + 1 ) ) ) |
27 |
26
|
breq1d |
⊢ ( ℎ = ( 𝑖 + 1 ) → ( ( 𝐸 ↑ ℎ ) ∼ 𝐹 ↔ ( 𝐸 ↑ ( 𝑖 + 1 ) ) ∼ 𝐹 ) ) |
28 |
|
oveq2 |
⊢ ( ℎ = 𝐿 → ( 𝐸 ↑ ℎ ) = ( 𝐸 ↑ 𝐿 ) ) |
29 |
28
|
breq1d |
⊢ ( ℎ = 𝐿 → ( ( 𝐸 ↑ ℎ ) ∼ 𝐹 ↔ ( 𝐸 ↑ 𝐿 ) ∼ 𝐹 ) ) |
30 |
1 19
|
aks6d1c1p1rcl |
⊢ ( 𝜑 → ( 𝐸 ∈ ℕ ∧ 𝐹 ∈ 𝐵 ) ) |
31 |
30
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
32 |
31
|
nncnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
33 |
32
|
exp0d |
⊢ ( 𝜑 → ( 𝐸 ↑ 0 ) = 1 ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
35 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐾 ∈ CRing ) |
37 |
6
|
crngmgp |
⊢ ( 𝐾 ∈ CRing → 𝑉 ∈ CMnd ) |
38 |
35 37
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ CMnd ) |
39 |
15
|
nnnn0d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
40 |
38 39 7
|
isprimroot |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
41 |
40
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) ) |
42 |
41
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝑅 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) ∧ ∀ 𝑙 ∈ ℕ0 ( ( 𝑙 ↑ 𝑦 ) = ( 0g ‘ 𝑉 ) → 𝑅 ∥ 𝑙 ) ) ) |
43 |
42
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑉 ) ) |
44 |
6 34
|
mgpbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝑉 ) |
45 |
43 44
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
46 |
30
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
48 |
11 2 34 3 36 45 47
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
48 44
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
51 |
50 7
|
mulg1 |
⊢ ( ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑉 ) → ( 1 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
52 |
49 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) |
53 |
50 7
|
mulg1 |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑉 ) → ( 1 ↑ 𝑦 ) = 𝑦 ) |
54 |
43 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1 ↑ 𝑦 ) = 𝑦 ) |
55 |
54
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → 𝑦 = ( 1 ↑ 𝑦 ) ) |
56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 1 ↑ 𝑦 ) ) ) |
57 |
52 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ) → ( 1 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 1 ↑ 𝑦 ) ) ) |
58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 1 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 1 ↑ 𝑦 ) ) ) |
59 |
|
1nn |
⊢ 1 ∈ ℕ |
60 |
59
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
61 |
1 46 60
|
aks6d1c1p1 |
⊢ ( 𝜑 → ( 1 ∼ 𝐹 ↔ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 1 ↑ ( ( 𝑂 ‘ 𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝐹 ) ‘ ( 1 ↑ 𝑦 ) ) ) ) |
62 |
58 61
|
mpbird |
⊢ ( 𝜑 → 1 ∼ 𝐹 ) |
63 |
33 62
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐸 ↑ 0 ) ∼ 𝐹 ) |
64 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝐸 ∈ ℂ ) |
65 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
66 |
65
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 1 ∈ ℕ0 ) |
67 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝑖 ∈ ℕ0 ) |
68 |
64 66 67
|
expaddd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( 𝐸 ↑ ( 𝑖 + 1 ) ) = ( ( 𝐸 ↑ 𝑖 ) · ( 𝐸 ↑ 1 ) ) ) |
69 |
64
|
exp1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( 𝐸 ↑ 1 ) = 𝐸 ) |
70 |
69
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( ( 𝐸 ↑ 𝑖 ) · ( 𝐸 ↑ 1 ) ) = ( ( 𝐸 ↑ 𝑖 ) · 𝐸 ) ) |
71 |
68 70
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( 𝐸 ↑ ( 𝑖 + 1 ) ) = ( ( 𝐸 ↑ 𝑖 ) · 𝐸 ) ) |
72 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝐾 ∈ Field ) |
73 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝑃 ∈ ℙ ) |
74 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝑅 ∈ ℕ ) |
75 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( 𝐸 gcd 𝑅 ) = 1 ) |
76 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝑃 ∥ 𝑁 ) |
77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) |
78 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → 𝐸 ∼ 𝐹 ) |
79 |
1 2 3 4 5 6 7 8 10 11 12 72 73 74 75 76 77 78
|
aks6d1c1p5 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( ( 𝐸 ↑ 𝑖 ) · 𝐸 ) ∼ 𝐹 ) |
80 |
71 79
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ ( 𝐸 ↑ 𝑖 ) ∼ 𝐹 ) → ( 𝐸 ↑ ( 𝑖 + 1 ) ) ∼ 𝐹 ) |
81 |
23 25 27 29 63 80
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐸 ↑ 𝐿 ) ∼ 𝐹 ) |
82 |
20 81
|
mpdan |
⊢ ( 𝜑 → ( 𝐸 ↑ 𝐿 ) ∼ 𝐹 ) |