Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } |
2 |
|
aks6d1c1.2 |
|- S = ( Poly1 ` K ) |
3 |
|
aks6d1c1.3 |
|- B = ( Base ` S ) |
4 |
|
aks6d1c1.4 |
|- X = ( var1 ` K ) |
5 |
|
aks6d1c1.5 |
|- W = ( mulGrp ` S ) |
6 |
|
aks6d1c1.6 |
|- V = ( mulGrp ` K ) |
7 |
|
aks6d1c1.7 |
|- .^ = ( .g ` V ) |
8 |
|
aks6d1c1.8 |
|- C = ( algSc ` S ) |
9 |
|
aks6d1c1.9 |
|- D = ( .g ` W ) |
10 |
|
aks6d1c1.10 |
|- P = ( chr ` K ) |
11 |
|
aks6d1c1.11 |
|- O = ( eval1 ` K ) |
12 |
|
aks6d1c1.12 |
|- .+ = ( +g ` S ) |
13 |
|
aks6d1c1.13 |
|- ( ph -> K e. Field ) |
14 |
|
aks6d1c1.14 |
|- ( ph -> P e. Prime ) |
15 |
|
aks6d1c1.15 |
|- ( ph -> R e. NN ) |
16 |
|
aks6d1c1.16 |
|- ( ph -> N e. NN ) |
17 |
|
aks6d1c1.17 |
|- ( ph -> P || N ) |
18 |
|
aks6d1c1.18 |
|- ( ph -> ( N gcd R ) = 1 ) |
19 |
|
aks6d1c1p8.1 |
|- ( ph -> E .~ F ) |
20 |
|
aks6d1c1p8.2 |
|- ( ph -> L e. NN0 ) |
21 |
|
aks6d1c1p8.3 |
|- ( ph -> ( E gcd R ) = 1 ) |
22 |
|
oveq2 |
|- ( h = 0 -> ( E ^ h ) = ( E ^ 0 ) ) |
23 |
22
|
breq1d |
|- ( h = 0 -> ( ( E ^ h ) .~ F <-> ( E ^ 0 ) .~ F ) ) |
24 |
|
oveq2 |
|- ( h = i -> ( E ^ h ) = ( E ^ i ) ) |
25 |
24
|
breq1d |
|- ( h = i -> ( ( E ^ h ) .~ F <-> ( E ^ i ) .~ F ) ) |
26 |
|
oveq2 |
|- ( h = ( i + 1 ) -> ( E ^ h ) = ( E ^ ( i + 1 ) ) ) |
27 |
26
|
breq1d |
|- ( h = ( i + 1 ) -> ( ( E ^ h ) .~ F <-> ( E ^ ( i + 1 ) ) .~ F ) ) |
28 |
|
oveq2 |
|- ( h = L -> ( E ^ h ) = ( E ^ L ) ) |
29 |
28
|
breq1d |
|- ( h = L -> ( ( E ^ h ) .~ F <-> ( E ^ L ) .~ F ) ) |
30 |
1 19
|
aks6d1c1p1rcl |
|- ( ph -> ( E e. NN /\ F e. B ) ) |
31 |
30
|
simpld |
|- ( ph -> E e. NN ) |
32 |
31
|
nncnd |
|- ( ph -> E e. CC ) |
33 |
32
|
exp0d |
|- ( ph -> ( E ^ 0 ) = 1 ) |
34 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
35 |
13
|
fldcrngd |
|- ( ph -> K e. CRing ) |
36 |
35
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> K e. CRing ) |
37 |
6
|
crngmgp |
|- ( K e. CRing -> V e. CMnd ) |
38 |
35 37
|
syl |
|- ( ph -> V e. CMnd ) |
39 |
15
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
40 |
38 39 7
|
isprimroot |
|- ( ph -> ( y e. ( V PrimRoots R ) <-> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) ) |
41 |
40
|
biimpd |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) ) |
42 |
41
|
imp |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` V ) /\ ( R .^ y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l .^ y ) = ( 0g ` V ) -> R || l ) ) ) |
43 |
42
|
simp1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` V ) ) |
44 |
6 34
|
mgpbas |
|- ( Base ` K ) = ( Base ` V ) |
45 |
43 44
|
eleqtrrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` K ) ) |
46 |
30
|
simprd |
|- ( ph -> F e. B ) |
47 |
46
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> F e. B ) |
48 |
11 2 34 3 36 45 47
|
fveval1fvcl |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` y ) e. ( Base ` K ) ) |
49 |
48 44
|
eleqtrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` y ) e. ( Base ` V ) ) |
50 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
51 |
50 7
|
mulg1 |
|- ( ( ( O ` F ) ` y ) e. ( Base ` V ) -> ( 1 .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` y ) ) |
52 |
49 51
|
syl |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1 .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` y ) ) |
53 |
50 7
|
mulg1 |
|- ( y e. ( Base ` V ) -> ( 1 .^ y ) = y ) |
54 |
43 53
|
syl |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1 .^ y ) = y ) |
55 |
54
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y = ( 1 .^ y ) ) |
56 |
55
|
fveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` y ) = ( ( O ` F ) ` ( 1 .^ y ) ) ) |
57 |
52 56
|
eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( 1 .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( 1 .^ y ) ) ) |
58 |
57
|
ralrimiva |
|- ( ph -> A. y e. ( V PrimRoots R ) ( 1 .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( 1 .^ y ) ) ) |
59 |
|
1nn |
|- 1 e. NN |
60 |
59
|
a1i |
|- ( ph -> 1 e. NN ) |
61 |
1 46 60
|
aks6d1c1p1 |
|- ( ph -> ( 1 .~ F <-> A. y e. ( V PrimRoots R ) ( 1 .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( 1 .^ y ) ) ) ) |
62 |
58 61
|
mpbird |
|- ( ph -> 1 .~ F ) |
63 |
33 62
|
eqbrtrd |
|- ( ph -> ( E ^ 0 ) .~ F ) |
64 |
32
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> E e. CC ) |
65 |
|
1nn0 |
|- 1 e. NN0 |
66 |
65
|
a1i |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> 1 e. NN0 ) |
67 |
|
simplr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> i e. NN0 ) |
68 |
64 66 67
|
expaddd |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( E ^ ( i + 1 ) ) = ( ( E ^ i ) x. ( E ^ 1 ) ) ) |
69 |
64
|
exp1d |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( E ^ 1 ) = E ) |
70 |
69
|
oveq2d |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( ( E ^ i ) x. ( E ^ 1 ) ) = ( ( E ^ i ) x. E ) ) |
71 |
68 70
|
eqtrd |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( E ^ ( i + 1 ) ) = ( ( E ^ i ) x. E ) ) |
72 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> K e. Field ) |
73 |
14
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> P e. Prime ) |
74 |
15
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> R e. NN ) |
75 |
21
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( E gcd R ) = 1 ) |
76 |
17
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> P || N ) |
77 |
|
simpr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( E ^ i ) .~ F ) |
78 |
19
|
ad2antrr |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> E .~ F ) |
79 |
1 2 3 4 5 6 7 8 10 11 12 72 73 74 75 76 77 78
|
aks6d1c1p5 |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( ( E ^ i ) x. E ) .~ F ) |
80 |
71 79
|
eqbrtrd |
|- ( ( ( ph /\ i e. NN0 ) /\ ( E ^ i ) .~ F ) -> ( E ^ ( i + 1 ) ) .~ F ) |
81 |
23 25 27 29 63 80
|
nn0indd |
|- ( ( ph /\ L e. NN0 ) -> ( E ^ L ) .~ F ) |
82 |
20 81
|
mpdan |
|- ( ph -> ( E ^ L ) .~ F ) |