Metamath Proof Explorer


Theorem aks6d1c1p8

Description: If a number E is introspective to F , then so are its powers. (Contributed by metakunt, 30-Apr-2025)

Ref Expression
Hypotheses aks6d1c1.1 ˙ = e f | e f B y V PrimRoots R e × ˙ O f y = O f e × ˙ y
aks6d1c1.2 S = Poly 1 K
aks6d1c1.3 B = Base S
aks6d1c1.4 X = var 1 K
aks6d1c1.5 W = mulGrp S
aks6d1c1.6 V = mulGrp K
aks6d1c1.7 × ˙ = V
aks6d1c1.8 C = algSc S
aks6d1c1.9 D = W
aks6d1c1.10 P = chr K
aks6d1c1.11 O = eval 1 K
aks6d1c1.12 + ˙ = + S
aks6d1c1.13 φ K Field
aks6d1c1.14 φ P
aks6d1c1.15 φ R
aks6d1c1.16 φ N
aks6d1c1.17 φ P N
aks6d1c1.18 φ N gcd R = 1
aks6d1c1p8.1 φ E ˙ F
aks6d1c1p8.2 φ L 0
aks6d1c1p8.3 φ E gcd R = 1
Assertion aks6d1c1p8 φ E L ˙ F

Proof

Step Hyp Ref Expression
1 aks6d1c1.1 ˙ = e f | e f B y V PrimRoots R e × ˙ O f y = O f e × ˙ y
2 aks6d1c1.2 S = Poly 1 K
3 aks6d1c1.3 B = Base S
4 aks6d1c1.4 X = var 1 K
5 aks6d1c1.5 W = mulGrp S
6 aks6d1c1.6 V = mulGrp K
7 aks6d1c1.7 × ˙ = V
8 aks6d1c1.8 C = algSc S
9 aks6d1c1.9 D = W
10 aks6d1c1.10 P = chr K
11 aks6d1c1.11 O = eval 1 K
12 aks6d1c1.12 + ˙ = + S
13 aks6d1c1.13 φ K Field
14 aks6d1c1.14 φ P
15 aks6d1c1.15 φ R
16 aks6d1c1.16 φ N
17 aks6d1c1.17 φ P N
18 aks6d1c1.18 φ N gcd R = 1
19 aks6d1c1p8.1 φ E ˙ F
20 aks6d1c1p8.2 φ L 0
21 aks6d1c1p8.3 φ E gcd R = 1
22 oveq2 h = 0 E h = E 0
23 22 breq1d h = 0 E h ˙ F E 0 ˙ F
24 oveq2 h = i E h = E i
25 24 breq1d h = i E h ˙ F E i ˙ F
26 oveq2 h = i + 1 E h = E i + 1
27 26 breq1d h = i + 1 E h ˙ F E i + 1 ˙ F
28 oveq2 h = L E h = E L
29 28 breq1d h = L E h ˙ F E L ˙ F
30 1 19 aks6d1c1p1rcl φ E F B
31 30 simpld φ E
32 31 nncnd φ E
33 32 exp0d φ E 0 = 1
34 eqid Base K = Base K
35 13 fldcrngd φ K CRing
36 35 adantr φ y V PrimRoots R K CRing
37 6 crngmgp K CRing V CMnd
38 35 37 syl φ V CMnd
39 15 nnnn0d φ R 0
40 38 39 7 isprimroot φ y V PrimRoots R y Base V R × ˙ y = 0 V l 0 l × ˙ y = 0 V R l
41 40 biimpd φ y V PrimRoots R y Base V R × ˙ y = 0 V l 0 l × ˙ y = 0 V R l
42 41 imp φ y V PrimRoots R y Base V R × ˙ y = 0 V l 0 l × ˙ y = 0 V R l
43 42 simp1d φ y V PrimRoots R y Base V
44 6 34 mgpbas Base K = Base V
45 43 44 eleqtrrdi φ y V PrimRoots R y Base K
46 30 simprd φ F B
47 46 adantr φ y V PrimRoots R F B
48 11 2 34 3 36 45 47 fveval1fvcl φ y V PrimRoots R O F y Base K
49 48 44 eleqtrdi φ y V PrimRoots R O F y Base V
50 eqid Base V = Base V
51 50 7 mulg1 O F y Base V 1 × ˙ O F y = O F y
52 49 51 syl φ y V PrimRoots R 1 × ˙ O F y = O F y
53 50 7 mulg1 y Base V 1 × ˙ y = y
54 43 53 syl φ y V PrimRoots R 1 × ˙ y = y
55 54 eqcomd φ y V PrimRoots R y = 1 × ˙ y
56 55 fveq2d φ y V PrimRoots R O F y = O F 1 × ˙ y
57 52 56 eqtrd φ y V PrimRoots R 1 × ˙ O F y = O F 1 × ˙ y
58 57 ralrimiva φ y V PrimRoots R 1 × ˙ O F y = O F 1 × ˙ y
59 1nn 1
60 59 a1i φ 1
61 1 46 60 aks6d1c1p1 φ 1 ˙ F y V PrimRoots R 1 × ˙ O F y = O F 1 × ˙ y
62 58 61 mpbird φ 1 ˙ F
63 33 62 eqbrtrd φ E 0 ˙ F
64 32 ad2antrr φ i 0 E i ˙ F E
65 1nn0 1 0
66 65 a1i φ i 0 E i ˙ F 1 0
67 simplr φ i 0 E i ˙ F i 0
68 64 66 67 expaddd φ i 0 E i ˙ F E i + 1 = E i E 1
69 64 exp1d φ i 0 E i ˙ F E 1 = E
70 69 oveq2d φ i 0 E i ˙ F E i E 1 = E i E
71 68 70 eqtrd φ i 0 E i ˙ F E i + 1 = E i E
72 13 ad2antrr φ i 0 E i ˙ F K Field
73 14 ad2antrr φ i 0 E i ˙ F P
74 15 ad2antrr φ i 0 E i ˙ F R
75 21 ad2antrr φ i 0 E i ˙ F E gcd R = 1
76 17 ad2antrr φ i 0 E i ˙ F P N
77 simpr φ i 0 E i ˙ F E i ˙ F
78 19 ad2antrr φ i 0 E i ˙ F E ˙ F
79 1 2 3 4 5 6 7 8 10 11 12 72 73 74 75 76 77 78 aks6d1c1p5 φ i 0 E i ˙ F E i E ˙ F
80 71 79 eqbrtrd φ i 0 E i ˙ F E i + 1 ˙ F
81 23 25 27 29 63 80 nn0indd φ L 0 E L ˙ F
82 20 81 mpdan φ E L ˙ F