Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1.1 |
|
2 |
|
aks6d1c1.2 |
|
3 |
|
aks6d1c1.3 |
|
4 |
|
aks6d1c1.4 |
|
5 |
|
aks6d1c1.5 |
|
6 |
|
aks6d1c1.6 |
|
7 |
|
aks6d1c1.7 |
|
8 |
|
aks6d1c1.8 |
|
9 |
|
aks6d1c1.9 |
|
10 |
|
aks6d1c1.10 |
|
11 |
|
aks6d1c1.11 |
|
12 |
|
aks6d1c1.12 |
|
13 |
|
aks6d1c1.13 |
|
14 |
|
aks6d1c1.14 |
|
15 |
|
aks6d1c1.15 |
|
16 |
|
aks6d1c1.16 |
|
17 |
|
aks6d1c1.17 |
|
18 |
|
aks6d1c1.18 |
|
19 |
|
aks6d1c1p8.1 |
|
20 |
|
aks6d1c1p8.2 |
|
21 |
|
aks6d1c1p8.3 |
|
22 |
|
oveq2 |
|
23 |
22
|
breq1d |
|
24 |
|
oveq2 |
|
25 |
24
|
breq1d |
|
26 |
|
oveq2 |
|
27 |
26
|
breq1d |
|
28 |
|
oveq2 |
|
29 |
28
|
breq1d |
|
30 |
1 19
|
aks6d1c1p1rcl |
|
31 |
30
|
simpld |
|
32 |
31
|
nncnd |
|
33 |
32
|
exp0d |
|
34 |
|
eqid |
|
35 |
13
|
fldcrngd |
|
36 |
35
|
adantr |
|
37 |
6
|
crngmgp |
|
38 |
35 37
|
syl |
|
39 |
15
|
nnnn0d |
|
40 |
38 39 7
|
isprimroot |
|
41 |
40
|
biimpd |
|
42 |
41
|
imp |
|
43 |
42
|
simp1d |
|
44 |
6 34
|
mgpbas |
|
45 |
43 44
|
eleqtrrdi |
|
46 |
30
|
simprd |
|
47 |
46
|
adantr |
|
48 |
11 2 34 3 36 45 47
|
fveval1fvcl |
|
49 |
48 44
|
eleqtrdi |
|
50 |
|
eqid |
|
51 |
50 7
|
mulg1 |
|
52 |
49 51
|
syl |
|
53 |
50 7
|
mulg1 |
|
54 |
43 53
|
syl |
|
55 |
54
|
eqcomd |
|
56 |
55
|
fveq2d |
|
57 |
52 56
|
eqtrd |
|
58 |
57
|
ralrimiva |
|
59 |
|
1nn |
|
60 |
59
|
a1i |
|
61 |
1 46 60
|
aks6d1c1p1 |
|
62 |
58 61
|
mpbird |
|
63 |
33 62
|
eqbrtrd |
|
64 |
32
|
ad2antrr |
|
65 |
|
1nn0 |
|
66 |
65
|
a1i |
|
67 |
|
simplr |
|
68 |
64 66 67
|
expaddd |
|
69 |
64
|
exp1d |
|
70 |
69
|
oveq2d |
|
71 |
68 70
|
eqtrd |
|
72 |
13
|
ad2antrr |
|
73 |
14
|
ad2antrr |
|
74 |
15
|
ad2antrr |
|
75 |
21
|
ad2antrr |
|
76 |
17
|
ad2antrr |
|
77 |
|
simpr |
|
78 |
19
|
ad2antrr |
|
79 |
1 2 3 4 5 6 7 8 10 11 12 72 73 74 75 76 77 78
|
aks6d1c1p5 |
|
80 |
71 79
|
eqbrtrd |
|
81 |
23 25 27 29 63 80
|
nn0indd |
|
82 |
20 81
|
mpdan |
|