Metamath Proof Explorer


Theorem aks6d1c1

Description: Claim 1 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf . (Contributed by metakunt, 30-Apr-2025)

Ref Expression
Hypotheses aks6d1c1.1 ˙ = e f | e f B y V PrimRoots R e × ˙ O f y = O f e × ˙ y
aks6d1c1.2 S = Poly 1 K
aks6d1c1.3 B = Base S
aks6d1c1.4 X = var 1 K
aks6d1c1.5 W = mulGrp S
aks6d1c1.6 V = mulGrp K
aks6d1c1.7 × ˙ = V
aks6d1c1.8 C = algSc S
aks6d1c1.9 D = W
aks6d1c1.10 P = chr K
aks6d1c1.11 O = eval 1 K
aks6d1c1.12 + ˙ = + S
aks6d1c1.13 φ K Field
aks6d1c1.14 φ P
aks6d1c1.15 φ R
aks6d1c1.16 φ N
aks6d1c1.17 φ P N
aks6d1c1.18 φ N gcd R = 1
aks6d1c1.19 φ F : 0 A 0
aks6d1c1.20 G = g 0 0 A W i = 0 A g i D X + ˙ C ℤRHom K i
aks6d1c1.21 φ A 0
aks6d1c1.22 φ U 0
aks6d1c1.23 φ L 0
aks6d1c1.24 E = P U N P L
aks6d1c1.25 φ a 1 A N ˙ X + ˙ C ℤRHom K a
aks6d1c1.26 φ x Base K P × ˙ x K RingIso K
Assertion aks6d1c1 φ E ˙ G F

Proof

Step Hyp Ref Expression
1 aks6d1c1.1 ˙ = e f | e f B y V PrimRoots R e × ˙ O f y = O f e × ˙ y
2 aks6d1c1.2 S = Poly 1 K
3 aks6d1c1.3 B = Base S
4 aks6d1c1.4 X = var 1 K
5 aks6d1c1.5 W = mulGrp S
6 aks6d1c1.6 V = mulGrp K
7 aks6d1c1.7 × ˙ = V
8 aks6d1c1.8 C = algSc S
9 aks6d1c1.9 D = W
10 aks6d1c1.10 P = chr K
11 aks6d1c1.11 O = eval 1 K
12 aks6d1c1.12 + ˙ = + S
13 aks6d1c1.13 φ K Field
14 aks6d1c1.14 φ P
15 aks6d1c1.15 φ R
16 aks6d1c1.16 φ N
17 aks6d1c1.17 φ P N
18 aks6d1c1.18 φ N gcd R = 1
19 aks6d1c1.19 φ F : 0 A 0
20 aks6d1c1.20 G = g 0 0 A W i = 0 A g i D X + ˙ C ℤRHom K i
21 aks6d1c1.21 φ A 0
22 aks6d1c1.22 φ U 0
23 aks6d1c1.23 φ L 0
24 aks6d1c1.24 E = P U N P L
25 aks6d1c1.25 φ a 1 A N ˙ X + ˙ C ℤRHom K a
26 aks6d1c1.26 φ x Base K P × ˙ x K RingIso K
27 21 nn0zd φ A
28 21 nn0ge0d φ 0 A
29 21 nn0red φ A
30 29 leidd φ A A
31 27 28 30 3jca φ A 0 A A A
32 oveq2 h = 0 0 h = 0 0
33 32 mpteq1d h = 0 i 0 h F i D X + ˙ C ℤRHom K i = i 0 0 F i D X + ˙ C ℤRHom K i
34 33 oveq2d h = 0 W i = 0 h F i D X + ˙ C ℤRHom K i = W i = 0 0 F i D X + ˙ C ℤRHom K i
35 34 breq2d h = 0 E ˙ W i = 0 h F i D X + ˙ C ℤRHom K i E ˙ W i = 0 0 F i D X + ˙ C ℤRHom K i
36 oveq2 h = j 0 h = 0 j
37 36 mpteq1d h = j i 0 h F i D X + ˙ C ℤRHom K i = i 0 j F i D X + ˙ C ℤRHom K i
38 37 oveq2d h = j W i = 0 h F i D X + ˙ C ℤRHom K i = W i = 0 j F i D X + ˙ C ℤRHom K i
39 38 breq2d h = j E ˙ W i = 0 h F i D X + ˙ C ℤRHom K i E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i
40 oveq2 h = j + 1 0 h = 0 j + 1
41 40 mpteq1d h = j + 1 i 0 h F i D X + ˙ C ℤRHom K i = i 0 j + 1 F i D X + ˙ C ℤRHom K i
42 41 oveq2d h = j + 1 W i = 0 h F i D X + ˙ C ℤRHom K i = W i = 0 j + 1 F i D X + ˙ C ℤRHom K i
43 42 breq2d h = j + 1 E ˙ W i = 0 h F i D X + ˙ C ℤRHom K i E ˙ W i = 0 j + 1 F i D X + ˙ C ℤRHom K i
44 oveq2 h = A 0 h = 0 A
45 44 mpteq1d h = A i 0 h F i D X + ˙ C ℤRHom K i = i 0 A F i D X + ˙ C ℤRHom K i
46 45 oveq2d h = A W i = 0 h F i D X + ˙ C ℤRHom K i = W i = 0 A F i D X + ˙ C ℤRHom K i
47 46 breq2d h = A E ˙ W i = 0 h F i D X + ˙ C ℤRHom K i E ˙ W i = 0 A F i D X + ˙ C ℤRHom K i
48 prmnn P P
49 14 48 syl φ P
50 49 22 nnexpcld φ P U
51 49 nnzd φ P
52 49 nnne0d φ P 0
53 16 nnzd φ N
54 dvdsval2 P P 0 N P N N P
55 51 52 53 54 syl3anc φ P N N P
56 17 55 mpbid φ N P
57 16 nnred φ N
58 49 nnred φ P
59 16 nngt0d φ 0 < N
60 49 nngt0d φ 0 < P
61 57 58 59 60 divgt0d φ 0 < N P
62 56 61 jca φ N P 0 < N P
63 elnnz N P N P 0 < N P
64 62 63 sylibr φ N P
65 64 23 nnexpcld φ N P L
66 50 65 nnmulcld φ P U N P L
67 24 66 eqeltrid φ E
68 1 2 3 4 6 7 10 11 13 14 15 16 17 18 67 aks6d1c1p7 φ E ˙ X
69 13 fldcrngd φ K CRing
70 2 ply1crng K CRing S CRing
71 69 70 syl φ S CRing
72 crngring S CRing S Ring
73 ringcmn S Ring S CMnd
74 72 73 syl S CRing S CMnd
75 71 74 syl φ S CMnd
76 cmnmnd S CMnd S Mnd
77 75 76 syl φ S Mnd
78 crngring K CRing K Ring
79 69 78 syl φ K Ring
80 eqid Base S = Base S
81 4 2 80 vr1cl K Ring X Base S
82 79 81 syl φ X Base S
83 eqid 0 S = 0 S
84 80 12 83 mndrid S Mnd X Base S X + ˙ 0 S = X
85 77 82 84 syl2anc φ X + ˙ 0 S = X
86 68 85 breqtrrd φ E ˙ X + ˙ 0 S
87 eqid ℤRHom K = ℤRHom K
88 eqid 0 K = 0 K
89 87 88 zrh0 K Ring ℤRHom K 0 = 0 K
90 79 89 syl φ ℤRHom K 0 = 0 K
91 90 fveq2d φ C ℤRHom K 0 = C 0 K
92 2 8 88 83 79 ply1ascl0 φ C 0 K = 0 S
93 91 92 eqtrd φ C ℤRHom K 0 = 0 S
94 93 oveq2d φ X + ˙ C ℤRHom K 0 = X + ˙ 0 S
95 86 94 breqtrrd φ E ˙ X + ˙ C ℤRHom K 0
96 0zd φ 0
97 0red φ 0
98 97 leidd φ 0 0
99 96 27 96 98 28 elfzd φ 0 0 A
100 19 99 ffvelcdmd φ F 0 0
101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 95 100 aks6d1c1p6 φ E ˙ F 0 D X + ˙ C ℤRHom K 0
102 5 crngmgp S CRing W CMnd
103 71 102 syl φ W CMnd
104 103 cmnmndd φ W Mnd
105 0z 0
106 105 a1i φ 0
107 eqid Base W = Base W
108 0le0 0 0
109 108 a1i φ 0 0
110 106 27 106 109 28 elfzd φ 0 0 A
111 19 110 ffvelcdmd φ F 0 0
112 87 zrhrhm K Ring ℤRHom K ring RingHom K
113 79 112 syl φ ℤRHom K ring RingHom K
114 zringbas = Base ring
115 eqid Base K = Base K
116 114 115 rhmf ℤRHom K ring RingHom K ℤRHom K : Base K
117 113 116 syl φ ℤRHom K : Base K
118 117 96 ffvelcdmd φ ℤRHom K 0 Base K
119 2 8 115 80 ply1sclcl K Ring ℤRHom K 0 Base K C ℤRHom K 0 Base S
120 79 118 119 syl2anc φ C ℤRHom K 0 Base S
121 80 12 mndcl S Mnd X Base S C ℤRHom K 0 Base S X + ˙ C ℤRHom K 0 Base S
122 77 82 120 121 syl3anc φ X + ˙ C ℤRHom K 0 Base S
123 5 80 mgpbas Base S = Base W
124 122 123 eleqtrdi φ X + ˙ C ℤRHom K 0 Base W
125 107 9 104 111 124 mulgnn0cld φ F 0 D X + ˙ C ℤRHom K 0 Base W
126 fveq2 i = 0 F i = F 0
127 2fveq3 i = 0 C ℤRHom K i = C ℤRHom K 0
128 127 oveq2d i = 0 X + ˙ C ℤRHom K i = X + ˙ C ℤRHom K 0
129 126 128 oveq12d i = 0 F i D X + ˙ C ℤRHom K i = F 0 D X + ˙ C ℤRHom K 0
130 107 129 gsumsn W Mnd 0 F 0 D X + ˙ C ℤRHom K 0 Base W W i 0 F i D X + ˙ C ℤRHom K i = F 0 D X + ˙ C ℤRHom K 0
131 104 106 125 130 syl3anc φ W i 0 F i D X + ˙ C ℤRHom K i = F 0 D X + ˙ C ℤRHom K 0
132 101 131 breqtrrd φ E ˙ W i 0 F i D X + ˙ C ℤRHom K i
133 fzsn 0 0 0 = 0
134 105 133 ax-mp 0 0 = 0
135 134 a1i φ 0 0 = 0
136 135 mpteq1d φ i 0 0 F i D X + ˙ C ℤRHom K i = i 0 F i D X + ˙ C ℤRHom K i
137 136 oveq2d φ W i = 0 0 F i D X + ˙ C ℤRHom K i = W i 0 F i D X + ˙ C ℤRHom K i
138 132 137 breqtrrd φ E ˙ W i = 0 0 F i D X + ˙ C ℤRHom K i
139 13 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i K Field
140 14 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i P
141 15 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i R
142 18 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i N gcd R = 1
143 17 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i P N
144 simp3 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i
145 nfcv _ k F i D X + ˙ C ℤRHom K i
146 nfcv _ i F k D X + ˙ C ℤRHom K k
147 fveq2 i = k F i = F k
148 2fveq3 i = k C ℤRHom K i = C ℤRHom K k
149 148 oveq2d i = k X + ˙ C ℤRHom K i = X + ˙ C ℤRHom K k
150 147 149 oveq12d i = k F i D X + ˙ C ℤRHom K i = F k D X + ˙ C ℤRHom K k
151 145 146 150 cbvmpt i 0 j F i D X + ˙ C ℤRHom K i = k 0 j F k D X + ˙ C ℤRHom K k
152 151 oveq2i W i = 0 j F i D X + ˙ C ℤRHom K i = W k = 0 j F k D X + ˙ C ℤRHom K k
153 152 a1i φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i W i = 0 j F i D X + ˙ C ℤRHom K i = W k = 0 j F k D X + ˙ C ℤRHom K k
154 144 153 breqtrd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i E ˙ W k = 0 j F k D X + ˙ C ℤRHom K k
155 13 adantr φ j 0 j j < A K Field
156 14 adantr φ j 0 j j < A P
157 15 adantr φ j 0 j j < A R
158 16 adantr φ j 0 j j < A N
159 17 adantr φ j 0 j j < A P N
160 18 adantr φ j 0 j j < A N gcd R = 1
161 24 a1i φ j 0 j j < A E = P U N P L
162 15 nnzd φ R
163 56 162 23 3jca φ N P R L 0
164 162 56 53 3jca φ R N P N
165 53 162 jca φ N R
166 gcdcom N R N gcd R = R gcd N
167 165 166 syl φ N gcd R = R gcd N
168 eqeq1 N gcd R = R gcd N N gcd R = 1 R gcd N = 1
169 167 168 syl φ N gcd R = 1 R gcd N = 1
170 169 pm5.74i φ N gcd R = 1 φ R gcd N = 1
171 18 170 mpbi φ R gcd N = 1
172 57 recnd φ N
173 58 recnd φ P
174 97 59 gtned φ N 0
175 172 172 173 174 52 divdiv2d φ N N P = N P N
176 172 173 mulcomd φ N P = P N
177 176 oveq1d φ N P N = P N N
178 173 172 172 174 174 divdiv2d φ P N N = P N N
179 178 eqcomd φ P N N = P N N
180 177 179 eqtrd φ N P N = P N N
181 172 174 dividd φ N N = 1
182 181 oveq2d φ P N N = P 1
183 173 div1d φ P 1 = P
184 182 183 eqtrd φ P N N = P
185 184 51 eqeltrd φ P N N
186 180 185 eqeltrd φ N P N
187 175 186 eqeltrd φ N N P
188 97 61 gtned φ N P 0
189 dvdsval2 N P N P 0 N N P N N N P
190 56 188 53 189 syl3anc φ N P N N N P
191 187 190 mpbird φ N P N
192 171 191 jca φ R gcd N = 1 N P N
193 rpdvds R N P N R gcd N = 1 N P N R gcd N P = 1
194 164 192 193 syl2anc φ R gcd N P = 1
195 162 56 jca φ R N P
196 gcdcom R N P R gcd N P = N P gcd R
197 195 196 syl φ R gcd N P = N P gcd R
198 eqeq1 R gcd N P = N P gcd R R gcd N P = 1 N P gcd R = 1
199 197 198 syl φ R gcd N P = 1 N P gcd R = 1
200 199 pm5.74i φ R gcd N P = 1 φ N P gcd R = 1
201 194 200 mpbi φ N P gcd R = 1
202 rpexp1i N P R L 0 N P gcd R = 1 N P L gcd R = 1
203 202 imp N P R L 0 N P gcd R = 1 N P L gcd R = 1
204 163 201 203 syl2anc φ N P L gcd R = 1
205 204 adantr φ j 0 j j < A N P L gcd R = 1
206 eqid X + ˙ C ℤRHom K j + 1 = X + ˙ C ℤRHom K j + 1
207 simpr1 φ j 0 j j < A j
208 207 peano2zd φ j 0 j j < A j + 1
209 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 aks6d1c1p2 φ j 0 j j < A P ˙ X + ˙ C ℤRHom K j + 1
210 22 adantr φ j 0 j j < A U 0
211 162 51 53 3jca φ R P N
212 171 17 jca φ R gcd N = 1 P N
213 rpdvds R P N R gcd N = 1 P N R gcd P = 1
214 211 212 213 syl2anc φ R gcd P = 1
215 162 51 jca φ R P
216 gcdcom R P R gcd P = P gcd R
217 215 216 syl φ R gcd P = P gcd R
218 eqeq1 R gcd P = P gcd R R gcd P = 1 P gcd R = 1
219 217 218 syl φ R gcd P = 1 P gcd R = 1
220 219 pm5.74i φ R gcd P = 1 φ P gcd R = 1
221 214 220 mpbi φ P gcd R = 1
222 221 adantr φ j 0 j j < A P gcd R = 1
223 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 209 210 222 aks6d1c1p8 φ j 0 j j < A P U ˙ X + ˙ C ℤRHom K j + 1
224 2fveq3 a = j + 1 C ℤRHom K a = C ℤRHom K j + 1
225 224 oveq2d a = j + 1 X + ˙ C ℤRHom K a = X + ˙ C ℤRHom K j + 1
226 225 breq2d a = j + 1 N ˙ X + ˙ C ℤRHom K a N ˙ X + ˙ C ℤRHom K j + 1
227 1 2 3 4 6 7 10 11 13 14 15 16 17 18 16 aks6d1c1p7 φ N ˙ X
228 227 85 breqtrrd φ N ˙ X + ˙ 0 S
229 228 94 breqtrrd φ N ˙ X + ˙ C ℤRHom K 0
230 229 adantr φ a = 0 N ˙ X + ˙ C ℤRHom K 0
231 simpr φ a = 0 a = 0
232 231 fveq2d φ a = 0 ℤRHom K a = ℤRHom K 0
233 232 fveq2d φ a = 0 C ℤRHom K a = C ℤRHom K 0
234 233 oveq2d φ a = 0 X + ˙ C ℤRHom K a = X + ˙ C ℤRHom K 0
235 230 234 breqtrrd φ a = 0 N ˙ X + ˙ C ℤRHom K a
236 235 ex φ a = 0 N ˙ X + ˙ C ℤRHom K a
237 236 adantr φ a 1 A N ˙ X + ˙ C ℤRHom K a a = 0 N ˙ X + ˙ C ℤRHom K a
238 simpr φ a 1 A N ˙ X + ˙ C ℤRHom K a a 1 A N ˙ X + ˙ C ℤRHom K a
239 1cnd φ a 1 A N ˙ X + ˙ C ℤRHom K a 1
240 239 addlidd φ a 1 A N ˙ X + ˙ C ℤRHom K a 0 + 1 = 1
241 240 oveq1d φ a 1 A N ˙ X + ˙ C ℤRHom K a 0 + 1 A = 1 A
242 241 eleq2d φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 + 1 A a 1 A
243 242 imbi1d φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 + 1 A N ˙ X + ˙ C ℤRHom K a a 1 A N ˙ X + ˙ C ℤRHom K a
244 238 243 mpbird φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 + 1 A N ˙ X + ˙ C ℤRHom K a
245 237 244 jaod φ a 1 A N ˙ X + ˙ C ℤRHom K a a = 0 a 0 + 1 A N ˙ X + ˙ C ℤRHom K a
246 27 28 jca φ A 0 A
247 eluz1 0 A 0 A 0 A
248 96 247 syl φ A 0 A 0 A
249 246 248 mpbird φ A 0
250 249 adantr φ a 1 A N ˙ X + ˙ C ℤRHom K a A 0
251 elfzp12 A 0 a 0 A a = 0 a 0 + 1 A
252 250 251 syl φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 A a = 0 a 0 + 1 A
253 252 imbi1d φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 A N ˙ X + ˙ C ℤRHom K a a = 0 a 0 + 1 A N ˙ X + ˙ C ℤRHom K a
254 245 253 mpbird φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 A N ˙ X + ˙ C ℤRHom K a
255 254 ex φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 A N ˙ X + ˙ C ℤRHom K a
256 255 ralimdv2 φ a 1 A N ˙ X + ˙ C ℤRHom K a a 0 A N ˙ X + ˙ C ℤRHom K a
257 25 256 mpd φ a 0 A N ˙ X + ˙ C ℤRHom K a
258 257 adantr φ j 0 j j < A a 0 A N ˙ X + ˙ C ℤRHom K a
259 0zd φ j 0 j j < A 0
260 27 adantr φ j 0 j j < A A
261 207 zred φ j 0 j j < A j
262 1red φ j 0 j j < A 1
263 simpr2 φ j 0 j j < A 0 j
264 0le1 0 1
265 264 a1i φ j 0 j j < A 0 1
266 261 262 263 265 addge0d φ j 0 j j < A 0 j + 1
267 simpr3 φ j 0 j j < A j < A
268 207 260 zltp1led φ j 0 j j < A j < A j + 1 A
269 267 268 mpbid φ j 0 j j < A j + 1 A
270 259 260 208 266 269 elfzd φ j 0 j j < A j + 1 0 A
271 226 258 270 rspcdva φ j 0 j j < A N ˙ X + ˙ C ℤRHom K j + 1
272 26 adantr φ j 0 j j < A x Base K P × ˙ x K RingIso K
273 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 271 272 aks6d1c1p3 φ j 0 j j < A N P ˙ X + ˙ C ℤRHom K j + 1
274 23 adantr φ j 0 j j < A L 0
275 201 adantr φ j 0 j j < A N P gcd R = 1
276 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 273 274 275 aks6d1c1p8 φ j 0 j j < A N P L ˙ X + ˙ C ℤRHom K j + 1
277 1 2 3 4 5 6 7 8 10 11 12 155 156 157 205 159 223 276 aks6d1c1p5 φ j 0 j j < A P U N P L ˙ X + ˙ C ℤRHom K j + 1
278 161 277 eqbrtrd φ j 0 j j < A E ˙ X + ˙ C ℤRHom K j + 1
279 19 adantr φ j 0 j j < A F : 0 A 0
280 279 270 ffvelcdmd φ j 0 j j < A F j + 1 0
281 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 278 280 aks6d1c1p6 φ j 0 j j < A E ˙ F j + 1 D X + ˙ C ℤRHom K j + 1
282 104 adantr φ j 0 j j < A W Mnd
283 ovexd φ j 0 j j < A j + 1 V
284 77 adantr φ j 0 j j < A S Mnd
285 82 adantr φ j 0 j j < A X Base S
286 79 adantr φ j 0 j j < A K Ring
287 117 adantr φ j 0 j j < A ℤRHom K : Base K
288 287 208 ffvelcdmd φ j 0 j j < A ℤRHom K j + 1 Base K
289 2 8 115 80 ply1sclcl K Ring ℤRHom K j + 1 Base K C ℤRHom K j + 1 Base S
290 286 288 289 syl2anc φ j 0 j j < A C ℤRHom K j + 1 Base S
291 80 12 mndcl S Mnd X Base S C ℤRHom K j + 1 Base S X + ˙ C ℤRHom K j + 1 Base S
292 284 285 290 291 syl3anc φ j 0 j j < A X + ˙ C ℤRHom K j + 1 Base S
293 292 123 eleqtrdi φ j 0 j j < A X + ˙ C ℤRHom K j + 1 Base W
294 107 9 282 280 293 mulgnn0cld φ j 0 j j < A F j + 1 D X + ˙ C ℤRHom K j + 1 Base W
295 fveq2 k = j + 1 F k = F j + 1
296 2fveq3 k = j + 1 C ℤRHom K k = C ℤRHom K j + 1
297 296 oveq2d k = j + 1 X + ˙ C ℤRHom K k = X + ˙ C ℤRHom K j + 1
298 295 297 oveq12d k = j + 1 F k D X + ˙ C ℤRHom K k = F j + 1 D X + ˙ C ℤRHom K j + 1
299 107 298 gsumsn W Mnd j + 1 V F j + 1 D X + ˙ C ℤRHom K j + 1 Base W W k j + 1 F k D X + ˙ C ℤRHom K k = F j + 1 D X + ˙ C ℤRHom K j + 1
300 282 283 294 299 syl3anc φ j 0 j j < A W k j + 1 F k D X + ˙ C ℤRHom K k = F j + 1 D X + ˙ C ℤRHom K j + 1
301 281 300 breqtrrd φ j 0 j j < A E ˙ W k j + 1 F k D X + ˙ C ℤRHom K k
302 301 3adant3 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i E ˙ W k j + 1 F k D X + ˙ C ℤRHom K k
303 1 2 3 4 5 6 7 8 9 10 11 12 139 140 141 142 143 154 302 aks6d1c1p4 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i E ˙ W k = 0 j F k D X + ˙ C ℤRHom K k + W W k j + 1 F k D X + ˙ C ℤRHom K k
304 145 146 150 cbvmpt i 0 j + 1 F i D X + ˙ C ℤRHom K i = k 0 j + 1 F k D X + ˙ C ℤRHom K k
305 304 a1i φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i i 0 j + 1 F i D X + ˙ C ℤRHom K i = k 0 j + 1 F k D X + ˙ C ℤRHom K k
306 305 oveq2d φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i W i = 0 j + 1 F i D X + ˙ C ℤRHom K i = W k = 0 j + 1 F k D X + ˙ C ℤRHom K k
307 eqid + W = + W
308 103 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i W CMnd
309 simp21 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i j
310 simp22 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i 0 j
311 309 310 jca φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i j 0 j
312 elnn0z j 0 j 0 j
313 311 312 sylibr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i j 0
314 282 3adant3 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i W Mnd
315 314 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 W Mnd
316 19 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i F : 0 A 0
317 316 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 F : 0 A 0
318 0zd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 0
319 27 3ad2ant1 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i A
320 319 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 A
321 elfzelz k 0 j + 1 k
322 321 adantl φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 k
323 elfzle1 k 0 j + 1 0 k
324 323 adantl φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 0 k
325 322 zred φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 k
326 309 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 j
327 326 zred φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 j
328 1red φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 1
329 327 328 readdcld φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 j + 1
330 320 zred φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 A
331 elfzle2 k 0 j + 1 k j + 1
332 331 adantl φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 k j + 1
333 simpl23 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 j < A
334 326 320 zltp1led φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 j < A j + 1 A
335 333 334 mpbid φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 j + 1 A
336 325 329 330 332 335 letrd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 k A
337 318 320 322 324 336 elfzd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 k 0 A
338 317 337 ffvelcdmd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 F k 0
339 284 3adant3 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i S Mnd
340 339 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 S Mnd
341 285 3adant3 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i X Base S
342 341 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 X Base S
343 286 3adant3 φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i K Ring
344 343 adantr φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 K Ring
345 344 112 116 3syl φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 ℤRHom K : Base K
346 345 322 ffvelcdmd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 ℤRHom K k Base K
347 2 8 115 80 ply1sclcl K Ring ℤRHom K k Base K C ℤRHom K k Base S
348 344 346 347 syl2anc φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 C ℤRHom K k Base S
349 80 12 mndcl S Mnd X Base S C ℤRHom K k Base S X + ˙ C ℤRHom K k Base S
350 340 342 348 349 syl3anc φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 X + ˙ C ℤRHom K k Base S
351 350 123 eleqtrdi φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 X + ˙ C ℤRHom K k Base W
352 107 9 315 338 351 mulgnn0cld φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i k 0 j + 1 F k D X + ˙ C ℤRHom K k Base W
353 107 307 308 313 352 gsummptfzsplit φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i W k = 0 j + 1 F k D X + ˙ C ℤRHom K k = W k = 0 j F k D X + ˙ C ℤRHom K k + W W k j + 1 F k D X + ˙ C ℤRHom K k
354 306 353 eqtrd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i W i = 0 j + 1 F i D X + ˙ C ℤRHom K i = W k = 0 j F k D X + ˙ C ℤRHom K k + W W k j + 1 F k D X + ˙ C ℤRHom K k
355 303 354 breqtrrd φ j 0 j j < A E ˙ W i = 0 j F i D X + ˙ C ℤRHom K i E ˙ W i = 0 j + 1 F i D X + ˙ C ℤRHom K i
356 35 39 43 47 138 355 96 27 28 fzindd φ A 0 A A A E ˙ W i = 0 A F i D X + ˙ C ℤRHom K i
357 356 ex φ A 0 A A A E ˙ W i = 0 A F i D X + ˙ C ℤRHom K i
358 31 357 mpd φ E ˙ W i = 0 A F i D X + ˙ C ℤRHom K i
359 20 a1i φ G = g 0 0 A W i = 0 A g i D X + ˙ C ℤRHom K i
360 simplr φ g = F i 0 A g = F
361 360 fveq1d φ g = F i 0 A g i = F i
362 361 oveq1d φ g = F i 0 A g i D X + ˙ C ℤRHom K i = F i D X + ˙ C ℤRHom K i
363 362 mpteq2dva φ g = F i 0 A g i D X + ˙ C ℤRHom K i = i 0 A F i D X + ˙ C ℤRHom K i
364 363 oveq2d φ g = F W i = 0 A g i D X + ˙ C ℤRHom K i = W i = 0 A F i D X + ˙ C ℤRHom K i
365 nn0ex 0 V
366 365 a1i φ 0 V
367 ovexd φ 0 A V
368 366 367 elmapd φ F 0 0 A F : 0 A 0
369 19 368 mpbird φ F 0 0 A
370 ovexd φ W i = 0 A F i D X + ˙ C ℤRHom K i V
371 359 364 369 370 fvmptd φ G F = W i = 0 A F i D X + ˙ C ℤRHom K i
372 358 371 breqtrrd φ E ˙ G F