| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c1.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
| 2 |
|
aks6d1c1.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
| 3 |
|
aks6d1c1.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
aks6d1c1.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
| 5 |
|
aks6d1c1.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
| 6 |
|
aks6d1c1.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
| 7 |
|
aks6d1c1.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
| 8 |
|
aks6d1c1.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
| 9 |
|
aks6d1c1.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
| 10 |
|
aks6d1c1.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
| 11 |
|
aks6d1c1.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
| 12 |
|
aks6d1c1.12 |
⊢ + = ( +g ‘ 𝑆 ) |
| 13 |
|
aks6d1c1.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 14 |
|
aks6d1c1.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 15 |
|
aks6d1c1.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 16 |
|
aks6d1c1.16 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 17 |
|
aks6d1c1.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 18 |
|
aks6d1c1.18 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 19 |
|
aks6d1c1.19 |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 20 |
|
aks6d1c1.20 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 21 |
|
aks6d1c1.21 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 22 |
|
aks6d1c1.22 |
⊢ ( 𝜑 → 𝑈 ∈ ℕ0 ) |
| 23 |
|
aks6d1c1.23 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 24 |
|
aks6d1c1.24 |
⊢ 𝐸 = ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) |
| 25 |
|
aks6d1c1.25 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 26 |
|
aks6d1c1.26 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 27 |
21
|
nn0zd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 28 |
21
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 29 |
21
|
nn0red |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 30 |
29
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 31 |
27 28 30
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴 ) ) |
| 32 |
|
oveq2 |
⊢ ( ℎ = 0 → ( 0 ... ℎ ) = ( 0 ... 0 ) ) |
| 33 |
32
|
mpteq1d |
⊢ ( ℎ = 0 → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ℎ = 0 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 35 |
34
|
breq2d |
⊢ ( ℎ = 0 → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 36 |
|
oveq2 |
⊢ ( ℎ = 𝑗 → ( 0 ... ℎ ) = ( 0 ... 𝑗 ) ) |
| 37 |
36
|
mpteq1d |
⊢ ( ℎ = 𝑗 → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
| 38 |
37
|
oveq2d |
⊢ ( ℎ = 𝑗 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 39 |
38
|
breq2d |
⊢ ( ℎ = 𝑗 → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 40 |
|
oveq2 |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 0 ... ℎ ) = ( 0 ... ( 𝑗 + 1 ) ) ) |
| 41 |
40
|
mpteq1d |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 43 |
42
|
breq2d |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 44 |
|
oveq2 |
⊢ ( ℎ = 𝐴 → ( 0 ... ℎ ) = ( 0 ... 𝐴 ) ) |
| 45 |
44
|
mpteq1d |
⊢ ( ℎ = 𝐴 → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ℎ = 𝐴 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 47 |
46
|
breq2d |
⊢ ( ℎ = 𝐴 → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 48 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 49 |
14 48
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 50 |
49 22
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑈 ) ∈ ℕ ) |
| 51 |
49
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 52 |
49
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 53 |
16
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 54 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 55 |
51 52 53 54
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 56 |
17 55
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 57 |
16
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 58 |
49
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 59 |
16
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 60 |
49
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑃 ) |
| 61 |
57 58 59 60
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝑁 / 𝑃 ) ) |
| 62 |
56 61
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 < ( 𝑁 / 𝑃 ) ) ) |
| 63 |
|
elnnz |
⊢ ( ( 𝑁 / 𝑃 ) ∈ ℕ ↔ ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 < ( 𝑁 / 𝑃 ) ) ) |
| 64 |
62 63
|
sylibr |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 65 |
64 23
|
nnexpcld |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ∈ ℕ ) |
| 66 |
50 65
|
nnmulcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) ∈ ℕ ) |
| 67 |
24 66
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
| 68 |
1 2 3 4 6 7 10 11 13 14 15 16 17 18 67
|
aks6d1c1p7 |
⊢ ( 𝜑 → 𝐸 ∼ 𝑋 ) |
| 69 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 70 |
2
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑆 ∈ CRing ) |
| 71 |
69 70
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 72 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
| 73 |
|
ringcmn |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ CMnd ) |
| 74 |
72 73
|
syl |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ CMnd ) |
| 75 |
71 74
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 76 |
|
cmnmnd |
⊢ ( 𝑆 ∈ CMnd → 𝑆 ∈ Mnd ) |
| 77 |
75 76
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 78 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
| 79 |
69 78
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 80 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 81 |
4 2 80
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 82 |
79 81
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 83 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 84 |
80 12 83
|
mndrid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 0g ‘ 𝑆 ) ) = 𝑋 ) |
| 85 |
77 82 84
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 + ( 0g ‘ 𝑆 ) ) = 𝑋 ) |
| 86 |
68 85
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑋 + ( 0g ‘ 𝑆 ) ) ) |
| 87 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
| 88 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 89 |
87 88
|
zrh0 |
⊢ ( 𝐾 ∈ Ring → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 90 |
79 89
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
| 91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) = ( 𝐶 ‘ ( 0g ‘ 𝐾 ) ) ) |
| 92 |
2 8 88 83 79
|
ply1ascl0 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝑆 ) ) |
| 93 |
91 92
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) = ( 0g ‘ 𝑆 ) ) |
| 94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) = ( 𝑋 + ( 0g ‘ 𝑆 ) ) ) |
| 95 |
86 94
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
| 96 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 97 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 98 |
97
|
leidd |
⊢ ( 𝜑 → 0 ≤ 0 ) |
| 99 |
96 27 96 98 28
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐴 ) ) |
| 100 |
19 99
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
| 101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 95 100
|
aks6d1c1p6 |
⊢ ( 𝜑 → 𝐸 ∼ ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
| 102 |
5
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → 𝑊 ∈ CMnd ) |
| 103 |
71 102
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
| 104 |
103
|
cmnmndd |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 105 |
|
0z |
⊢ 0 ∈ ℤ |
| 106 |
105
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 107 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 108 |
|
0le0 |
⊢ 0 ≤ 0 |
| 109 |
108
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
| 110 |
106 27 106 109 28
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐴 ) ) |
| 111 |
19 110
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
| 112 |
87
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
| 113 |
79 112
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
| 114 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 115 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 116 |
114 115
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 117 |
113 116
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 118 |
117 96
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
| 119 |
2 8 115 80
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 120 |
79 118 119
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 121 |
80 12
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 122 |
77 82 120 121
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 123 |
5 80
|
mgpbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑊 ) |
| 124 |
122 123
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 125 |
107 9 104 111 124
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 126 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 0 ) ) |
| 127 |
|
2fveq3 |
⊢ ( 𝑖 = 0 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) |
| 128 |
127
|
oveq2d |
⊢ ( 𝑖 = 0 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
| 129 |
126 128
|
oveq12d |
⊢ ( 𝑖 = 0 → ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
| 130 |
107 129
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 0 ∈ ℤ ∧ ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
| 131 |
104 106 125 130
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
| 132 |
101 131
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 133 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
| 134 |
105 133
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
| 135 |
134
|
a1i |
⊢ ( 𝜑 → ( 0 ... 0 ) = { 0 } ) |
| 136 |
135
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
| 137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 138 |
132 137
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 139 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐾 ∈ Field ) |
| 140 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑃 ∈ ℙ ) |
| 141 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑅 ∈ ℕ ) |
| 142 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 143 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑃 ∥ 𝑁 ) |
| 144 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 145 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) |
| 146 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) |
| 147 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 148 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑘 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) |
| 150 |
147 149
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) |
| 151 |
145 146 150
|
cbvmpt |
⊢ ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) |
| 152 |
151
|
oveq2i |
⊢ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) |
| 153 |
152
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 154 |
144 153
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 155 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐾 ∈ Field ) |
| 156 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑃 ∈ ℙ ) |
| 157 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑅 ∈ ℕ ) |
| 158 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑁 ∈ ℕ ) |
| 159 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑃 ∥ 𝑁 ) |
| 160 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 161 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 = ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) ) |
| 162 |
15
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
| 163 |
56 162 23
|
3jca |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0 ) ) |
| 164 |
162 56 53
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 165 |
53 162
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) ) |
| 166 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑁 gcd 𝑅 ) = ( 𝑅 gcd 𝑁 ) ) |
| 167 |
165 166
|
syl |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = ( 𝑅 gcd 𝑁 ) ) |
| 168 |
|
eqeq1 |
⊢ ( ( 𝑁 gcd 𝑅 ) = ( 𝑅 gcd 𝑁 ) → ( ( 𝑁 gcd 𝑅 ) = 1 ↔ ( 𝑅 gcd 𝑁 ) = 1 ) ) |
| 169 |
167 168
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 gcd 𝑅 ) = 1 ↔ ( 𝑅 gcd 𝑁 ) = 1 ) ) |
| 170 |
169
|
pm5.74i |
⊢ ( ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) ↔ ( 𝜑 → ( 𝑅 gcd 𝑁 ) = 1 ) ) |
| 171 |
18 170
|
mpbi |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑁 ) = 1 ) |
| 172 |
57
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 173 |
58
|
recnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 174 |
97 59
|
gtned |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 175 |
172 172 173 174 52
|
divdiv2d |
⊢ ( 𝜑 → ( 𝑁 / ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 · 𝑃 ) / 𝑁 ) ) |
| 176 |
172 173
|
mulcomd |
⊢ ( 𝜑 → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
| 177 |
176
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 · 𝑃 ) / 𝑁 ) = ( ( 𝑃 · 𝑁 ) / 𝑁 ) ) |
| 178 |
173 172 172 174 174
|
divdiv2d |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) = ( ( 𝑃 · 𝑁 ) / 𝑁 ) ) |
| 179 |
178
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑃 · 𝑁 ) / 𝑁 ) = ( 𝑃 / ( 𝑁 / 𝑁 ) ) ) |
| 180 |
177 179
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 · 𝑃 ) / 𝑁 ) = ( 𝑃 / ( 𝑁 / 𝑁 ) ) ) |
| 181 |
172 174
|
dividd |
⊢ ( 𝜑 → ( 𝑁 / 𝑁 ) = 1 ) |
| 182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) = ( 𝑃 / 1 ) ) |
| 183 |
173
|
div1d |
⊢ ( 𝜑 → ( 𝑃 / 1 ) = 𝑃 ) |
| 184 |
182 183
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) = 𝑃 ) |
| 185 |
184 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) ∈ ℤ ) |
| 186 |
180 185
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑁 · 𝑃 ) / 𝑁 ) ∈ ℤ ) |
| 187 |
175 186
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑁 / ( 𝑁 / 𝑃 ) ) ∈ ℤ ) |
| 188 |
97 61
|
gtned |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ≠ 0 ) |
| 189 |
|
dvdsval2 |
⊢ ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 / 𝑃 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑁 / 𝑃 ) ) ∈ ℤ ) ) |
| 190 |
56 188 53 189
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑁 / 𝑃 ) ) ∈ ℤ ) ) |
| 191 |
187 190
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∥ 𝑁 ) |
| 192 |
171 191
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑁 ) = 1 ∧ ( 𝑁 / 𝑃 ) ∥ 𝑁 ) ) |
| 193 |
|
rpdvds |
⊢ ( ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑅 gcd 𝑁 ) = 1 ∧ ( 𝑁 / 𝑃 ) ∥ 𝑁 ) ) → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ) |
| 194 |
164 192 193
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ) |
| 195 |
162 56
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
| 196 |
|
gcdcom |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ) → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) ) |
| 197 |
195 196
|
syl |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) ) |
| 198 |
|
eqeq1 |
⊢ ( ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) → ( ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ↔ ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) ) |
| 199 |
197 198
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ↔ ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) ) |
| 200 |
199
|
pm5.74i |
⊢ ( ( 𝜑 → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ) ↔ ( 𝜑 → ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) ) |
| 201 |
194 200
|
mpbi |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) |
| 202 |
|
rpexp1i |
⊢ ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0 ) → ( ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) ) |
| 203 |
202
|
imp |
⊢ ( ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0 ) ∧ ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) |
| 204 |
163 201 203
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) |
| 205 |
204
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) |
| 206 |
|
eqid |
⊢ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 207 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑗 ∈ ℤ ) |
| 208 |
207
|
peano2zd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 209 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208
|
aks6d1c1p2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑃 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 210 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑈 ∈ ℕ0 ) |
| 211 |
162 51 53
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 212 |
171 17
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑁 ) = 1 ∧ 𝑃 ∥ 𝑁 ) ) |
| 213 |
|
rpdvds |
⊢ ( ( ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑅 gcd 𝑁 ) = 1 ∧ 𝑃 ∥ 𝑁 ) ) → ( 𝑅 gcd 𝑃 ) = 1 ) |
| 214 |
211 212 213
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑃 ) = 1 ) |
| 215 |
162 51
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
| 216 |
|
gcdcom |
⊢ ( ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑅 gcd 𝑃 ) = ( 𝑃 gcd 𝑅 ) ) |
| 217 |
215 216
|
syl |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑃 ) = ( 𝑃 gcd 𝑅 ) ) |
| 218 |
|
eqeq1 |
⊢ ( ( 𝑅 gcd 𝑃 ) = ( 𝑃 gcd 𝑅 ) → ( ( 𝑅 gcd 𝑃 ) = 1 ↔ ( 𝑃 gcd 𝑅 ) = 1 ) ) |
| 219 |
217 218
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑃 ) = 1 ↔ ( 𝑃 gcd 𝑅 ) = 1 ) ) |
| 220 |
219
|
pm5.74i |
⊢ ( ( 𝜑 → ( 𝑅 gcd 𝑃 ) = 1 ) ↔ ( 𝜑 → ( 𝑃 gcd 𝑅 ) = 1 ) ) |
| 221 |
214 220
|
mpbi |
⊢ ( 𝜑 → ( 𝑃 gcd 𝑅 ) = 1 ) |
| 222 |
221
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑃 gcd 𝑅 ) = 1 ) |
| 223 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 209 210 222
|
aks6d1c1p8 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑃 ↑ 𝑈 ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 224 |
|
2fveq3 |
⊢ ( 𝑎 = ( 𝑗 + 1 ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 225 |
224
|
oveq2d |
⊢ ( 𝑎 = ( 𝑗 + 1 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 226 |
225
|
breq2d |
⊢ ( 𝑎 = ( 𝑗 + 1 ) → ( 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ↔ 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 227 |
1 2 3 4 6 7 10 11 13 14 15 16 17 18 16
|
aks6d1c1p7 |
⊢ ( 𝜑 → 𝑁 ∼ 𝑋 ) |
| 228 |
227 85
|
breqtrrd |
⊢ ( 𝜑 → 𝑁 ∼ ( 𝑋 + ( 0g ‘ 𝑆 ) ) ) |
| 229 |
228 94
|
breqtrrd |
⊢ ( 𝜑 → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
| 230 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
| 231 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → 𝑎 = 0 ) |
| 232 |
231
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) |
| 233 |
232
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) |
| 234 |
233
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
| 235 |
230 234
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 236 |
235
|
ex |
⊢ ( 𝜑 → ( 𝑎 = 0 → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 = 0 → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 238 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 239 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → 1 ∈ ℂ ) |
| 240 |
239
|
addlidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 0 + 1 ) = 1 ) |
| 241 |
240
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 0 + 1 ) ... 𝐴 ) = ( 1 ... 𝐴 ) ) |
| 242 |
241
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ↔ 𝑎 ∈ ( 1 ... 𝐴 ) ) ) |
| 243 |
242
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ↔ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) ) |
| 244 |
238 243
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 245 |
237 244
|
jaod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 246 |
27 28
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) |
| 247 |
|
eluz1 |
⊢ ( 0 ∈ ℤ → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) ) |
| 248 |
96 247
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) ) |
| 249 |
246 248
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 250 |
249
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 251 |
|
elfzp12 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) ↔ ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) ) ) |
| 252 |
250 251
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) ↔ ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) ) ) |
| 253 |
252
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 𝑎 ∈ ( 0 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ↔ ( ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) ) |
| 254 |
245 253
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 255 |
254
|
ex |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) ) |
| 256 |
255
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) → ∀ 𝑎 ∈ ( 0 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
| 257 |
25 256
|
mpd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 0 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 258 |
257
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ∀ 𝑎 ∈ ( 0 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
| 259 |
|
0zd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ∈ ℤ ) |
| 260 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 261 |
207
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑗 ∈ ℝ ) |
| 262 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 1 ∈ ℝ ) |
| 263 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ≤ 𝑗 ) |
| 264 |
|
0le1 |
⊢ 0 ≤ 1 |
| 265 |
264
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ≤ 1 ) |
| 266 |
261 262 263 265
|
addge0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ≤ ( 𝑗 + 1 ) ) |
| 267 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑗 < 𝐴 ) |
| 268 |
207 260
|
zltp1led |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 < 𝐴 ↔ ( 𝑗 + 1 ) ≤ 𝐴 ) ) |
| 269 |
267 268
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ≤ 𝐴 ) |
| 270 |
259 260 208 266 269
|
elfzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝐴 ) ) |
| 271 |
226 258 270
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 272 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
| 273 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 271 272
|
aks6d1c1p3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑁 / 𝑃 ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 274 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐿 ∈ ℕ0 ) |
| 275 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) |
| 276 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 273 274 275
|
aks6d1c1p8 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 277 |
1 2 3 4 5 6 7 8 10 11 12 155 156 157 205 159 223 276
|
aks6d1c1p5 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 278 |
161 277
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 279 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 280 |
279 270
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℕ0 ) |
| 281 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 278 280
|
aks6d1c1p6 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 ∼ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 282 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑊 ∈ Mnd ) |
| 283 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ∈ V ) |
| 284 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑆 ∈ Mnd ) |
| 285 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 286 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐾 ∈ Ring ) |
| 287 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 288 |
287 208
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 289 |
2 8 115 80
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 290 |
286 288 289
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 291 |
80 12
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 292 |
284 285 290 291
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 293 |
292 123
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 294 |
107 9 282 280 293
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 295 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 296 |
|
2fveq3 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 297 |
296
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 298 |
295 297
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 299 |
107 298
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ ( 𝑗 + 1 ) ∈ V ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 300 |
282 283 294 299
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 301 |
281 300
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 302 |
301
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 303 |
1 2 3 4 5 6 7 8 9 10 11 12 139 140 141 142 143 154 302
|
aks6d1c1p4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 304 |
145 146 150
|
cbvmpt |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) |
| 305 |
304
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) |
| 306 |
305
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 307 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 308 |
103
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑊 ∈ CMnd ) |
| 309 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑗 ∈ ℤ ) |
| 310 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 0 ≤ 𝑗 ) |
| 311 |
309 310
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
| 312 |
|
elnn0z |
⊢ ( 𝑗 ∈ ℕ0 ↔ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
| 313 |
311 312
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑗 ∈ ℕ0 ) |
| 314 |
282
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑊 ∈ Mnd ) |
| 315 |
314
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑊 ∈ Mnd ) |
| 316 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 317 |
316
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
| 318 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 0 ∈ ℤ ) |
| 319 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐴 ∈ ℤ ) |
| 320 |
319
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐴 ∈ ℤ ) |
| 321 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 322 |
321
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 323 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) → 0 ≤ 𝑘 ) |
| 324 |
323
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 0 ≤ 𝑘 ) |
| 325 |
322
|
zred |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 326 |
309
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 327 |
326
|
zred |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ℝ ) |
| 328 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 1 ∈ ℝ ) |
| 329 |
327 328
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 330 |
320
|
zred |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐴 ∈ ℝ ) |
| 331 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) → 𝑘 ≤ ( 𝑗 + 1 ) ) |
| 332 |
331
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ≤ ( 𝑗 + 1 ) ) |
| 333 |
|
simpl23 |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑗 < 𝐴 ) |
| 334 |
326 320
|
zltp1led |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑗 < 𝐴 ↔ ( 𝑗 + 1 ) ≤ 𝐴 ) ) |
| 335 |
333 334
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝐴 ) |
| 336 |
325 329 330 332 335
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ≤ 𝐴 ) |
| 337 |
318 320 322 324 336
|
elfzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( 0 ... 𝐴 ) ) |
| 338 |
317 337
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ0 ) |
| 339 |
284
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑆 ∈ Mnd ) |
| 340 |
339
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑆 ∈ Mnd ) |
| 341 |
285
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 342 |
341
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 343 |
286
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐾 ∈ Ring ) |
| 344 |
343
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐾 ∈ Ring ) |
| 345 |
344 112 116
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
| 346 |
345 322
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) ) |
| 347 |
2 8 115 80
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 348 |
344 346 347
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 349 |
80 12
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 350 |
340 342 348 349
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 351 |
350 123
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 352 |
107 9 315 338 351
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 353 |
107 307 308 313 352
|
gsummptfzsplit |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 354 |
306 353
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 355 |
303 354
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 356 |
35 39 43 47 138 355 96 27 28
|
fzindd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴 ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 357 |
356
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴 ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 358 |
31 357
|
mpd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 359 |
20
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 360 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝐹 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑔 = 𝐹 ) |
| 361 |
360
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝐹 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 362 |
361
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝐹 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) |
| 363 |
362
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐹 ) → ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
| 364 |
363
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐹 ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 365 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 366 |
365
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 367 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
| 368 |
366 367
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
| 369 |
19 368
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
| 370 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ V ) |
| 371 |
359 364 369 370
|
fvmptd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 372 |
358 371
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝐺 ‘ 𝐹 ) ) |