Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1.1 |
⊢ ∼ = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 ∈ ℕ ∧ 𝑓 ∈ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝑉 PrimRoots 𝑅 ) ( 𝑒 ↑ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝑂 ‘ 𝑓 ) ‘ ( 𝑒 ↑ 𝑦 ) ) ) } |
2 |
|
aks6d1c1.2 |
⊢ 𝑆 = ( Poly1 ‘ 𝐾 ) |
3 |
|
aks6d1c1.3 |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
aks6d1c1.4 |
⊢ 𝑋 = ( var1 ‘ 𝐾 ) |
5 |
|
aks6d1c1.5 |
⊢ 𝑊 = ( mulGrp ‘ 𝑆 ) |
6 |
|
aks6d1c1.6 |
⊢ 𝑉 = ( mulGrp ‘ 𝐾 ) |
7 |
|
aks6d1c1.7 |
⊢ ↑ = ( .g ‘ 𝑉 ) |
8 |
|
aks6d1c1.8 |
⊢ 𝐶 = ( algSc ‘ 𝑆 ) |
9 |
|
aks6d1c1.9 |
⊢ 𝐷 = ( .g ‘ 𝑊 ) |
10 |
|
aks6d1c1.10 |
⊢ 𝑃 = ( chr ‘ 𝐾 ) |
11 |
|
aks6d1c1.11 |
⊢ 𝑂 = ( eval1 ‘ 𝐾 ) |
12 |
|
aks6d1c1.12 |
⊢ + = ( +g ‘ 𝑆 ) |
13 |
|
aks6d1c1.13 |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
14 |
|
aks6d1c1.14 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
15 |
|
aks6d1c1.15 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
|
aks6d1c1.16 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
17 |
|
aks6d1c1.17 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
18 |
|
aks6d1c1.18 |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |
19 |
|
aks6d1c1.19 |
⊢ ( 𝜑 → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
20 |
|
aks6d1c1.20 |
⊢ 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
21 |
|
aks6d1c1.21 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
22 |
|
aks6d1c1.22 |
⊢ ( 𝜑 → 𝑈 ∈ ℕ0 ) |
23 |
|
aks6d1c1.23 |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
24 |
|
aks6d1c1.24 |
⊢ 𝐸 = ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) |
25 |
|
aks6d1c1.25 |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
26 |
|
aks6d1c1.26 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
27 |
21
|
nn0zd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
28 |
21
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
29 |
21
|
nn0red |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
30 |
29
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
31 |
27 28 30
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴 ) ) |
32 |
|
oveq2 |
⊢ ( ℎ = 0 → ( 0 ... ℎ ) = ( 0 ... 0 ) ) |
33 |
32
|
mpteq1d |
⊢ ( ℎ = 0 → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
34 |
33
|
oveq2d |
⊢ ( ℎ = 0 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
35 |
34
|
breq2d |
⊢ ( ℎ = 0 → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
36 |
|
oveq2 |
⊢ ( ℎ = 𝑗 → ( 0 ... ℎ ) = ( 0 ... 𝑗 ) ) |
37 |
36
|
mpteq1d |
⊢ ( ℎ = 𝑗 → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
38 |
37
|
oveq2d |
⊢ ( ℎ = 𝑗 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
39 |
38
|
breq2d |
⊢ ( ℎ = 𝑗 → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
40 |
|
oveq2 |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 0 ... ℎ ) = ( 0 ... ( 𝑗 + 1 ) ) ) |
41 |
40
|
mpteq1d |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
42 |
41
|
oveq2d |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
43 |
42
|
breq2d |
⊢ ( ℎ = ( 𝑗 + 1 ) → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
44 |
|
oveq2 |
⊢ ( ℎ = 𝐴 → ( 0 ... ℎ ) = ( 0 ... 𝐴 ) ) |
45 |
44
|
mpteq1d |
⊢ ( ℎ = 𝐴 → ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ℎ = 𝐴 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
47 |
46
|
breq2d |
⊢ ( ℎ = 𝐴 → ( 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ℎ ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ↔ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
48 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
49 |
14 48
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
50 |
49 22
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑈 ) ∈ ℕ ) |
51 |
49
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
52 |
49
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
53 |
16
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
54 |
|
dvdsval2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
55 |
51 52 53 54
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
56 |
17 55
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
57 |
16
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
58 |
49
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
59 |
16
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
60 |
49
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑃 ) |
61 |
57 58 59 60
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝑁 / 𝑃 ) ) |
62 |
56 61
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 < ( 𝑁 / 𝑃 ) ) ) |
63 |
|
elnnz |
⊢ ( ( 𝑁 / 𝑃 ) ∈ ℕ ↔ ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 0 < ( 𝑁 / 𝑃 ) ) ) |
64 |
62 63
|
sylibr |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
65 |
64 23
|
nnexpcld |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ∈ ℕ ) |
66 |
50 65
|
nnmulcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) ∈ ℕ ) |
67 |
24 66
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
68 |
1 2 3 4 6 7 10 11 13 14 15 16 17 18 67
|
aks6d1c1p7 |
⊢ ( 𝜑 → 𝐸 ∼ 𝑋 ) |
69 |
13
|
fldcrngd |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
70 |
2
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑆 ∈ CRing ) |
71 |
69 70
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
72 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
73 |
|
ringcmn |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ CMnd ) |
74 |
72 73
|
syl |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ CMnd ) |
75 |
71 74
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
76 |
|
cmnmnd |
⊢ ( 𝑆 ∈ CMnd → 𝑆 ∈ Mnd ) |
77 |
75 76
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
78 |
|
crngring |
⊢ ( 𝐾 ∈ CRing → 𝐾 ∈ Ring ) |
79 |
69 78
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
80 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
81 |
4 2 80
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
82 |
79 81
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
83 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
84 |
80 12 83
|
mndrid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 0g ‘ 𝑆 ) ) = 𝑋 ) |
85 |
77 82 84
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 + ( 0g ‘ 𝑆 ) ) = 𝑋 ) |
86 |
68 85
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑋 + ( 0g ‘ 𝑆 ) ) ) |
87 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐾 ) = ( ℤRHom ‘ 𝐾 ) |
88 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
89 |
87 88
|
zrh0 |
⊢ ( 𝐾 ∈ Ring → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
90 |
79 89
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) = ( 0g ‘ 𝐾 ) ) |
91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) = ( 𝐶 ‘ ( 0g ‘ 𝐾 ) ) ) |
92 |
2 8 88 83 79
|
ply1ascl0 |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 0g ‘ 𝐾 ) ) = ( 0g ‘ 𝑆 ) ) |
93 |
91 92
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) = ( 0g ‘ 𝑆 ) ) |
94 |
93
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) = ( 𝑋 + ( 0g ‘ 𝑆 ) ) ) |
95 |
86 94
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
96 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
97 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
98 |
97
|
leidd |
⊢ ( 𝜑 → 0 ≤ 0 ) |
99 |
96 27 96 98 28
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐴 ) ) |
100 |
19 99
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 95 100
|
aks6d1c1p6 |
⊢ ( 𝜑 → 𝐸 ∼ ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
102 |
5
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → 𝑊 ∈ CMnd ) |
103 |
71 102
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
104 |
103
|
cmnmndd |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
105 |
|
0z |
⊢ 0 ∈ ℤ |
106 |
105
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
107 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
108 |
|
0le0 |
⊢ 0 ≤ 0 |
109 |
108
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
110 |
106 27 106 109 28
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝐴 ) ) |
111 |
19 110
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
112 |
87
|
zrhrhm |
⊢ ( 𝐾 ∈ Ring → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
113 |
79 112
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) ) |
114 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
115 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
116 |
114 115
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐾 ) ∈ ( ℤring RingHom 𝐾 ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
117 |
113 116
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
118 |
117 96
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) |
119 |
2 8 115 80
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ∈ ( Base ‘ 𝑆 ) ) |
120 |
79 118 119
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ∈ ( Base ‘ 𝑆 ) ) |
121 |
80 12
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
122 |
77 82 120 121
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
123 |
5 80
|
mgpbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑊 ) |
124 |
122 123
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
125 |
107 9 104 111 124
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
126 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 0 ) ) |
127 |
|
2fveq3 |
⊢ ( 𝑖 = 0 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) |
128 |
127
|
oveq2d |
⊢ ( 𝑖 = 0 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
129 |
126 128
|
oveq12d |
⊢ ( 𝑖 = 0 → ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
130 |
107 129
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ 0 ∈ ℤ ∧ ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
131 |
104 106 125 130
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝐹 ‘ 0 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) ) |
132 |
101 131
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
133 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
134 |
105 133
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
135 |
134
|
a1i |
⊢ ( 𝜑 → ( 0 ... 0 ) = { 0 } ) |
136 |
135
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
138 |
132 137
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 0 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
139 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐾 ∈ Field ) |
140 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑃 ∈ ℙ ) |
141 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑅 ∈ ℕ ) |
142 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
143 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑃 ∥ 𝑁 ) |
144 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
145 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) |
146 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) |
147 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑘 ) ) |
148 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑘 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) |
149 |
148
|
oveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) |
150 |
147 149
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) |
151 |
145 146 150
|
cbvmpt |
⊢ ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) |
152 |
151
|
oveq2i |
⊢ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) |
153 |
152
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
154 |
144 153
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
155 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐾 ∈ Field ) |
156 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑃 ∈ ℙ ) |
157 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑅 ∈ ℕ ) |
158 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑁 ∈ ℕ ) |
159 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑃 ∥ 𝑁 ) |
160 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
161 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 = ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) ) |
162 |
15
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
163 |
56 162 23
|
3jca |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0 ) ) |
164 |
162 56 53
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
165 |
53 162
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) ) |
166 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑁 gcd 𝑅 ) = ( 𝑅 gcd 𝑁 ) ) |
167 |
165 166
|
syl |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = ( 𝑅 gcd 𝑁 ) ) |
168 |
|
eqeq1 |
⊢ ( ( 𝑁 gcd 𝑅 ) = ( 𝑅 gcd 𝑁 ) → ( ( 𝑁 gcd 𝑅 ) = 1 ↔ ( 𝑅 gcd 𝑁 ) = 1 ) ) |
169 |
167 168
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 gcd 𝑅 ) = 1 ↔ ( 𝑅 gcd 𝑁 ) = 1 ) ) |
170 |
169
|
pm5.74i |
⊢ ( ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) ↔ ( 𝜑 → ( 𝑅 gcd 𝑁 ) = 1 ) ) |
171 |
18 170
|
mpbi |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑁 ) = 1 ) |
172 |
57
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
173 |
58
|
recnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
174 |
97 59
|
gtned |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
175 |
172 172 173 174 52
|
divdiv2d |
⊢ ( 𝜑 → ( 𝑁 / ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 · 𝑃 ) / 𝑁 ) ) |
176 |
172 173
|
mulcomd |
⊢ ( 𝜑 → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
177 |
176
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 · 𝑃 ) / 𝑁 ) = ( ( 𝑃 · 𝑁 ) / 𝑁 ) ) |
178 |
173 172 172 174 174
|
divdiv2d |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) = ( ( 𝑃 · 𝑁 ) / 𝑁 ) ) |
179 |
178
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑃 · 𝑁 ) / 𝑁 ) = ( 𝑃 / ( 𝑁 / 𝑁 ) ) ) |
180 |
177 179
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 · 𝑃 ) / 𝑁 ) = ( 𝑃 / ( 𝑁 / 𝑁 ) ) ) |
181 |
172 174
|
dividd |
⊢ ( 𝜑 → ( 𝑁 / 𝑁 ) = 1 ) |
182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) = ( 𝑃 / 1 ) ) |
183 |
173
|
div1d |
⊢ ( 𝜑 → ( 𝑃 / 1 ) = 𝑃 ) |
184 |
182 183
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) = 𝑃 ) |
185 |
184 51
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑃 / ( 𝑁 / 𝑁 ) ) ∈ ℤ ) |
186 |
180 185
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑁 · 𝑃 ) / 𝑁 ) ∈ ℤ ) |
187 |
175 186
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑁 / ( 𝑁 / 𝑃 ) ) ∈ ℤ ) |
188 |
97 61
|
gtned |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ≠ 0 ) |
189 |
|
dvdsval2 |
⊢ ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 / 𝑃 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑁 / 𝑃 ) ) ∈ ℤ ) ) |
190 |
56 188 53 189
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑁 / 𝑃 ) ) ∈ ℤ ) ) |
191 |
187 190
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∥ 𝑁 ) |
192 |
171 191
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑁 ) = 1 ∧ ( 𝑁 / 𝑃 ) ∥ 𝑁 ) ) |
193 |
|
rpdvds |
⊢ ( ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑅 gcd 𝑁 ) = 1 ∧ ( 𝑁 / 𝑃 ) ∥ 𝑁 ) ) → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ) |
194 |
164 192 193
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ) |
195 |
162 56
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ) ) |
196 |
|
gcdcom |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ) → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) ) |
197 |
195 196
|
syl |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) ) |
198 |
|
eqeq1 |
⊢ ( ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) → ( ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ↔ ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) ) |
199 |
197 198
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ↔ ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) ) |
200 |
199
|
pm5.74i |
⊢ ( ( 𝜑 → ( 𝑅 gcd ( 𝑁 / 𝑃 ) ) = 1 ) ↔ ( 𝜑 → ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) ) |
201 |
194 200
|
mpbi |
⊢ ( 𝜑 → ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) |
202 |
|
rpexp1i |
⊢ ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0 ) → ( ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) ) |
203 |
202
|
imp |
⊢ ( ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝐿 ∈ ℕ0 ) ∧ ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) |
204 |
163 201 203
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) |
205 |
204
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) gcd 𝑅 ) = 1 ) |
206 |
|
eqid |
⊢ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) |
207 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑗 ∈ ℤ ) |
208 |
207
|
peano2zd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
209 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208
|
aks6d1c1p2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑃 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
210 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑈 ∈ ℕ0 ) |
211 |
162 51 53
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
212 |
171 17
|
jca |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑁 ) = 1 ∧ 𝑃 ∥ 𝑁 ) ) |
213 |
|
rpdvds |
⊢ ( ( ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑅 gcd 𝑁 ) = 1 ∧ 𝑃 ∥ 𝑁 ) ) → ( 𝑅 gcd 𝑃 ) = 1 ) |
214 |
211 212 213
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑃 ) = 1 ) |
215 |
162 51
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
216 |
|
gcdcom |
⊢ ( ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑅 gcd 𝑃 ) = ( 𝑃 gcd 𝑅 ) ) |
217 |
215 216
|
syl |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑃 ) = ( 𝑃 gcd 𝑅 ) ) |
218 |
|
eqeq1 |
⊢ ( ( 𝑅 gcd 𝑃 ) = ( 𝑃 gcd 𝑅 ) → ( ( 𝑅 gcd 𝑃 ) = 1 ↔ ( 𝑃 gcd 𝑅 ) = 1 ) ) |
219 |
217 218
|
syl |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑃 ) = 1 ↔ ( 𝑃 gcd 𝑅 ) = 1 ) ) |
220 |
219
|
pm5.74i |
⊢ ( ( 𝜑 → ( 𝑅 gcd 𝑃 ) = 1 ) ↔ ( 𝜑 → ( 𝑃 gcd 𝑅 ) = 1 ) ) |
221 |
214 220
|
mpbi |
⊢ ( 𝜑 → ( 𝑃 gcd 𝑅 ) = 1 ) |
222 |
221
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑃 gcd 𝑅 ) = 1 ) |
223 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 209 210 222
|
aks6d1c1p8 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑃 ↑ 𝑈 ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
224 |
|
2fveq3 |
⊢ ( 𝑎 = ( 𝑗 + 1 ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) |
225 |
224
|
oveq2d |
⊢ ( 𝑎 = ( 𝑗 + 1 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
226 |
225
|
breq2d |
⊢ ( 𝑎 = ( 𝑗 + 1 ) → ( 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ↔ 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
227 |
1 2 3 4 6 7 10 11 13 14 15 16 17 18 16
|
aks6d1c1p7 |
⊢ ( 𝜑 → 𝑁 ∼ 𝑋 ) |
228 |
227 85
|
breqtrrd |
⊢ ( 𝜑 → 𝑁 ∼ ( 𝑋 + ( 0g ‘ 𝑆 ) ) ) |
229 |
228 94
|
breqtrrd |
⊢ ( 𝜑 → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
230 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
231 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → 𝑎 = 0 ) |
232 |
231
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) = ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) |
233 |
232
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) |
234 |
233
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 0 ) ) ) ) |
235 |
230 234
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
236 |
235
|
ex |
⊢ ( 𝜑 → ( 𝑎 = 0 → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 = 0 → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
238 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
239 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → 1 ∈ ℂ ) |
240 |
239
|
addlidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 0 + 1 ) = 1 ) |
241 |
240
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 0 + 1 ) ... 𝐴 ) = ( 1 ... 𝐴 ) ) |
242 |
241
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ↔ 𝑎 ∈ ( 1 ... 𝐴 ) ) ) |
243 |
242
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ↔ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) ) |
244 |
238 243
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
245 |
237 244
|
jaod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
246 |
27 28
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) |
247 |
|
eluz1 |
⊢ ( 0 ∈ ℤ → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) ) |
248 |
96 247
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) ) |
249 |
246 248
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
250 |
249
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
251 |
|
elfzp12 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) ↔ ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) ) ) |
252 |
250 251
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) ↔ ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) ) ) |
253 |
252
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( ( 𝑎 ∈ ( 0 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ↔ ( ( 𝑎 = 0 ∨ 𝑎 ∈ ( ( 0 + 1 ) ... 𝐴 ) ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) ) |
254 |
245 253
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
255 |
254
|
ex |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( 1 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) → ( 𝑎 ∈ ( 0 ... 𝐴 ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) ) |
256 |
255
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( 1 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) → ∀ 𝑎 ∈ ( 0 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) ) |
257 |
25 256
|
mpd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 0 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
258 |
257
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ∀ 𝑎 ∈ ( 0 ... 𝐴 ) 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑎 ) ) ) ) |
259 |
|
0zd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ∈ ℤ ) |
260 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐴 ∈ ℤ ) |
261 |
207
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑗 ∈ ℝ ) |
262 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 1 ∈ ℝ ) |
263 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ≤ 𝑗 ) |
264 |
|
0le1 |
⊢ 0 ≤ 1 |
265 |
264
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ≤ 1 ) |
266 |
261 262 263 265
|
addge0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 0 ≤ ( 𝑗 + 1 ) ) |
267 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑗 < 𝐴 ) |
268 |
207 260
|
zltp1led |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 < 𝐴 ↔ ( 𝑗 + 1 ) ≤ 𝐴 ) ) |
269 |
267 268
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ≤ 𝐴 ) |
270 |
259 260 208 266 269
|
elfzd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝐴 ) ) |
271 |
226 258 270
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑁 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
272 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑃 ↑ 𝑥 ) ) ∈ ( 𝐾 RingIso 𝐾 ) ) |
273 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 271 272
|
aks6d1c1p3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑁 / 𝑃 ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
274 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐿 ∈ ℕ0 ) |
275 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝑁 / 𝑃 ) gcd 𝑅 ) = 1 ) |
276 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 273 274 275
|
aks6d1c1p8 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
277 |
1 2 3 4 5 6 7 8 10 11 12 155 156 157 205 159 223 276
|
aks6d1c1p5 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝑃 ↑ 𝑈 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝐿 ) ) ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
278 |
161 277
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 ∼ ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
279 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
280 |
279 270
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ ℕ0 ) |
281 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 278 280
|
aks6d1c1p6 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 ∼ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
282 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑊 ∈ Mnd ) |
283 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑗 + 1 ) ∈ V ) |
284 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑆 ∈ Mnd ) |
285 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
286 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐾 ∈ Ring ) |
287 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
288 |
287 208
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ∈ ( Base ‘ 𝐾 ) ) |
289 |
2 8 115 80
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
290 |
286 288 289
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
291 |
80 12
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
292 |
284 285 290 291
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
293 |
292 123
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
294 |
107 9 282 280 293
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
295 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
296 |
|
2fveq3 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) |
297 |
296
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) = ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
298 |
295 297
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
299 |
107 298
|
gsumsn |
⊢ ( ( 𝑊 ∈ Mnd ∧ ( 𝑗 + 1 ) ∈ V ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
300 |
282 283 294 299
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
301 |
281 300
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
302 |
301
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
303 |
1 2 3 4 5 6 7 8 9 10 11 12 139 140 141 142 143 154 302
|
aks6d1c1p4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
304 |
145 146 150
|
cbvmpt |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) |
305 |
304
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) |
306 |
305
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) |
307 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
308 |
103
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑊 ∈ CMnd ) |
309 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑗 ∈ ℤ ) |
310 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 0 ≤ 𝑗 ) |
311 |
309 310
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
312 |
|
elnn0z |
⊢ ( 𝑗 ∈ ℕ0 ↔ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
313 |
311 312
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑗 ∈ ℕ0 ) |
314 |
282
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑊 ∈ Mnd ) |
315 |
314
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑊 ∈ Mnd ) |
316 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
317 |
316
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) |
318 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 0 ∈ ℤ ) |
319 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐴 ∈ ℤ ) |
320 |
319
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐴 ∈ ℤ ) |
321 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ℤ ) |
322 |
321
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
323 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) → 0 ≤ 𝑘 ) |
324 |
323
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 0 ≤ 𝑘 ) |
325 |
322
|
zred |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℝ ) |
326 |
309
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
327 |
326
|
zred |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑗 ∈ ℝ ) |
328 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 1 ∈ ℝ ) |
329 |
327 328
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
330 |
320
|
zred |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐴 ∈ ℝ ) |
331 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) → 𝑘 ≤ ( 𝑗 + 1 ) ) |
332 |
331
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ≤ ( 𝑗 + 1 ) ) |
333 |
|
simpl23 |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑗 < 𝐴 ) |
334 |
326 320
|
zltp1led |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑗 < 𝐴 ↔ ( 𝑗 + 1 ) ≤ 𝐴 ) ) |
335 |
333 334
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ≤ 𝐴 ) |
336 |
325 329 330 332 335
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ≤ 𝐴 ) |
337 |
318 320 322 324 336
|
elfzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( 0 ... 𝐴 ) ) |
338 |
317 337
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ0 ) |
339 |
284
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑆 ∈ Mnd ) |
340 |
339
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑆 ∈ Mnd ) |
341 |
285
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
342 |
341
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
343 |
286
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐾 ∈ Ring ) |
344 |
343
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → 𝐾 ∈ Ring ) |
345 |
344 112 116
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( ℤRHom ‘ 𝐾 ) : ℤ ⟶ ( Base ‘ 𝐾 ) ) |
346 |
345 322
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) ) |
347 |
2 8 115 80
|
ply1sclcl |
⊢ ( ( 𝐾 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑆 ) ) |
348 |
344 346 347
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑆 ) ) |
349 |
80 12
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
350 |
340 342 348 349
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
351 |
350 123
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
352 |
107 9 315 338 351
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
353 |
107 307 308 313 352
|
gsummptfzsplit |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
354 |
306 353
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑊 Σg ( 𝑘 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ( +g ‘ 𝑊 ) ( 𝑊 Σg ( 𝑘 ∈ { ( 𝑗 + 1 ) } ↦ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
355 |
303 354
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ∧ 𝑗 < 𝐴 ) ∧ 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑗 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( 𝑗 + 1 ) ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
356 |
35 39 43 47 138 355 96 27 28
|
fzindd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴 ) ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
357 |
356
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐴 ) → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
358 |
31 357
|
mpd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
359 |
20
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑔 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
360 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝐹 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑔 = 𝐹 ) |
361 |
360
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝐹 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑔 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
362 |
361
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 = 𝐹 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) = ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) |
363 |
362
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐹 ) → ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) |
364 |
363
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐹 ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝑔 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
365 |
|
nn0ex |
⊢ ℕ0 ∈ V |
366 |
365
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
367 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ V ) |
368 |
366 367
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ↔ 𝐹 : ( 0 ... 𝐴 ) ⟶ ℕ0 ) ) |
369 |
19 368
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ℕ0 ↑m ( 0 ... 𝐴 ) ) ) |
370 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ∈ V ) |
371 |
359 364 369 370
|
fvmptd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝐴 ) ↦ ( ( 𝐹 ‘ 𝑖 ) 𝐷 ( 𝑋 + ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐾 ) ‘ 𝑖 ) ) ) ) ) ) ) |
372 |
358 371
|
breqtrrd |
⊢ ( 𝜑 → 𝐸 ∼ ( 𝐺 ‘ 𝐹 ) ) |