| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1gprodd.1 | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 2 |  | evl1gprodd.2 | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | evl1gprodd.3 | ⊢ 𝑄  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 4 |  | evl1gprodd.4 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | evl1gprodd.5 | ⊢ 𝑈  =  ( Base ‘ 𝑃 ) | 
						
							| 6 |  | evl1gprodd.6 | ⊢ 𝑆  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 7 |  | evl1gprodd.7 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 8 |  | evl1gprodd.8 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | evl1gprodd.9 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈 ) | 
						
							| 10 |  | evl1gprodd.10 | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 11 |  | mpteq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑥  ∈  𝑎  ↦  𝑀 )  =  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) )  =  ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) ) ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 15 |  | mpteq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 17 | 14 16 | eqeq12d | ⊢ ( 𝑎  =  ∅  →  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  ↔  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) | 
						
							| 18 |  | mpteq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑥  ∈  𝑎  ↦  𝑀 )  =  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) )  =  ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 22 |  | mpteq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 24 | 21 23 | eqeq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  ↔  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) | 
						
							| 25 |  | mpteq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑥  ∈  𝑎  ↦  𝑀 )  =  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) )  =  ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 29 |  | mpteq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 31 | 28 30 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  ↔  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) | 
						
							| 32 |  | mpteq1 | ⊢ ( 𝑎  =  𝑁  →  ( 𝑥  ∈  𝑎  ↦  𝑀 )  =  ( 𝑥  ∈  𝑁  ↦  𝑀 ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑎  =  𝑁  →  ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) )  =  ( 𝑄  Σg  ( 𝑥  ∈  𝑁  ↦  𝑀 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑎  =  𝑁  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑁  ↦  𝑀 ) ) ) ) | 
						
							| 35 | 34 | fveq1d | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑁  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 36 |  | mpteq1 | ⊢ ( 𝑎  =  𝑁  →  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑥  ∈  𝑁  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑎  =  𝑁  →  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑁  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 38 | 35 37 | eqeq12d | ⊢ ( 𝑎  =  𝑁  →  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑎  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑎  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  ↔  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑁  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑁  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) | 
						
							| 39 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  𝑀 )  =  ∅ | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ∅  ↦  𝑀 )  =  ∅ ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝜑  →  ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) )  =  ( 𝑄  Σg  ∅ ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ∅ ) ) ) | 
						
							| 43 | 42 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ∅ ) ) ‘ 𝑌 ) ) | 
						
							| 44 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ∅ | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ∅ ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  Σg  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ∅ ) ) | 
						
							| 47 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 48 | 47 | gsum0 | ⊢ ( 𝑆  Σg  ∅ )  =  ( 0g ‘ 𝑆 ) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  ( 𝑆  Σg  ∅ )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 50 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 51 | 6 50 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 52 | 51 | eqcomi | ⊢ ( 0g ‘ 𝑆 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 53 | 52 | a1i | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 54 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 55 | 7 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 56 | 6 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝑆  ∈  Mnd ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Mnd ) | 
						
							| 58 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 59 | 58 47 | mndidcl | ⊢ ( 𝑆  ∈  Mnd  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 60 | 57 59 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 62 | 6 61 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑆 ) | 
						
							| 63 | 4 62 | eqtri | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 64 | 60 63 | eleqtrrdi | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 65 | 51 | a1i | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 66 | 65 | eleq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 )  ∈  𝐵  ↔  ( 0g ‘ 𝑆 )  ∈  𝐵 ) ) | 
						
							| 67 | 64 66 | mpbird | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 68 | 1 2 4 54 5 7 67 8 | evl1scad | ⊢ ( 𝜑  →  ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 )  =  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 69 | 68 | simprd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) ) | 
						
							| 71 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 72 | 2 54 50 71 | ply1scl1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 73 | 55 72 | syl | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 74 | 3 71 | ringidval | ⊢ ( 1r ‘ 𝑃 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 75 | 74 | a1i | ⊢ ( 𝜑  →  ( 1r ‘ 𝑃 )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 76 | 73 75 | eqtrd | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 77 | 76 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ) | 
						
							| 78 | 77 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) | 
						
							| 79 | 70 78 | eqtrd | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) | 
						
							| 80 | 53 79 | eqtrd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  =  ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) | 
						
							| 81 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 82 | 81 | gsum0 | ⊢ ( 𝑄  Σg  ∅ )  =  ( 0g ‘ 𝑄 ) | 
						
							| 83 | 82 | a1i | ⊢ ( 𝜑  →  ( 𝑄  Σg  ∅ )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 84 | 83 | eqcomd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑄 )  =  ( 𝑄  Σg  ∅ ) ) | 
						
							| 85 | 84 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 0g ‘ 𝑄 ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ∅ ) ) ) | 
						
							| 86 | 85 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ∅ ) ) ‘ 𝑌 ) ) | 
						
							| 87 | 49 80 86 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑆  Σg  ∅ )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ∅ ) ) ‘ 𝑌 ) ) | 
						
							| 88 | 46 87 | eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ∅ ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 89 | 43 88 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ∅  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  ∅  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 90 |  | nfcv | ⊢ Ⅎ 𝑦 𝑀 | 
						
							| 91 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑀 | 
						
							| 92 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝑀  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) | 
						
							| 93 | 90 91 92 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 )  =  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) | 
						
							| 94 | 93 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 )  =  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) )  =  ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) ) | 
						
							| 97 | 96 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 98 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 99 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 100 | 3 99 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ 𝑄 ) | 
						
							| 101 | 2 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 102 | 7 101 | syl | ⊢ ( 𝜑  →  𝑃  ∈  CRing ) | 
						
							| 103 | 3 | crngmgp | ⊢ ( 𝑃  ∈  CRing  →  𝑄  ∈  CMnd ) | 
						
							| 104 | 102 103 | syl | ⊢ ( 𝜑  →  𝑄  ∈  CMnd ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  →  𝑄  ∈  CMnd ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑄  ∈  CMnd ) | 
						
							| 107 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 108 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑏  ⊆  𝑁 ) | 
						
							| 109 | 107 108 | ssfid | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑏  ∈  Fin ) | 
						
							| 110 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈 ) | 
						
							| 111 | 108 | sselda | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  𝑦  ∈  𝑁 ) | 
						
							| 112 |  | rspcsbela | ⊢ ( ( 𝑦  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) | 
						
							| 113 | 112 | expcom | ⊢ ( ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈  →  ( 𝑦  ∈  𝑁  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) ) | 
						
							| 114 | 113 | imp | ⊢ ( ( ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈  ∧  𝑦  ∈  𝑁 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) | 
						
							| 115 | 110 111 114 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) | 
						
							| 116 | 3 5 | mgpbas | ⊢ 𝑈  =  ( Base ‘ 𝑄 ) | 
						
							| 117 | 116 | eqcomi | ⊢ ( Base ‘ 𝑄 )  =  𝑈 | 
						
							| 118 | 117 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  =  𝑈 ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  →  ( Base ‘ 𝑄 )  =  𝑈 ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( Base ‘ 𝑄 )  =  𝑈 ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( Base ‘ 𝑄 )  =  𝑈 ) | 
						
							| 122 | 121 | eleq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  ( Base ‘ 𝑄 )  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) ) | 
						
							| 123 | 115 122 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 124 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) | 
						
							| 125 | 124 | eldifbd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ¬  𝑐  ∈  𝑏 ) | 
						
							| 126 | 124 | eldifad | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑐  ∈  𝑁 ) | 
						
							| 127 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈 ) | 
						
							| 128 |  | rspcsbela | ⊢ ( ( 𝑐  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 𝑀  ∈  𝑈 )  →  ⦋ 𝑐  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) | 
						
							| 129 | 126 127 128 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ⦋ 𝑐  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) | 
						
							| 130 | 120 | eleq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ⦋ 𝑐  /  𝑥 ⦌ 𝑀  ∈  ( Base ‘ 𝑄 )  ↔  ⦋ 𝑐  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) ) | 
						
							| 131 | 129 130 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ⦋ 𝑐  /  𝑥 ⦌ 𝑀  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 132 |  | csbeq1 | ⊢ ( 𝑦  =  𝑐  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  =  ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) | 
						
							| 133 | 98 100 106 109 123 124 125 131 132 | gsumunsn | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) )  =  ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) )  =  ( 𝑂 ‘ ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ) ) | 
						
							| 135 | 134 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) ) | 
						
							| 136 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑅  ∈  CRing ) | 
						
							| 137 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 138 | 115 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ∀ 𝑦  ∈  𝑏 ⦋ 𝑦  /  𝑥 ⦌ 𝑀  ∈  𝑈 ) | 
						
							| 139 | 116 106 109 138 | gsummptcl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) )  ∈  𝑈 ) | 
						
							| 140 | 92 | equcoms | ⊢ ( 𝑦  =  𝑥  →  𝑀  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) | 
						
							| 141 | 140 | eqcomd | ⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑀  =  𝑀 ) | 
						
							| 142 | 91 90 141 | cbvmpt | ⊢ ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 )  =  ( 𝑥  ∈  𝑏  ↦  𝑀 ) | 
						
							| 143 | 142 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 )  =  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) | 
						
							| 144 | 143 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) )  =  ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) | 
						
							| 145 | 144 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) )  =  ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ) | 
						
							| 146 | 145 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 147 | 139 146 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) ) | 
						
							| 148 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 149 | 129 148 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ⦋ 𝑐  /  𝑥 ⦌ 𝑀  ∈  𝑈  ∧  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 150 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 151 | 1 2 4 5 136 137 147 149 99 150 | evl1muld | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐  /  𝑥 ⦌ 𝑀 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 152 | 151 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( ( 𝑄  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 153 | 135 152 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 154 | 97 153 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 155 | 6 150 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑆 ) | 
						
							| 156 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 157 | 156 | crngmgp | ⊢ ( 𝑅  ∈  CRing  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 158 | 7 157 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  CMnd ) | 
						
							| 159 | 6 158 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  CMnd ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  →  𝑆  ∈  CMnd ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  𝑆  ∈  CMnd ) | 
						
							| 162 |  | csbfv12 | ⊢ ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  ( ⦋ 𝑦  /  𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑌 ) | 
						
							| 163 |  | csbfv2g | ⊢ ( 𝑦  ∈  V  →  ⦋ 𝑦  /  𝑥 ⦌ ( 𝑂 ‘ 𝑀 )  =  ( 𝑂 ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ) | 
						
							| 164 | 163 | elv | ⊢ ⦋ 𝑦  /  𝑥 ⦌ ( 𝑂 ‘ 𝑀 )  =  ( 𝑂 ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) | 
						
							| 165 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 166 |  | nfcv | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 167 | 165 166 | csbgfi | ⊢ ⦋ 𝑦  /  𝑥 ⦌ 𝑌  =  𝑌 | 
						
							| 168 | 164 167 | fveq12i | ⊢ ( ⦋ 𝑦  /  𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑌 )  =  ( ( 𝑂 ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) | 
						
							| 169 | 162 168 | eqtri | ⊢ ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) | 
						
							| 170 | 62 | eqcomi | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑅 ) | 
						
							| 171 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  𝑅  ∈  CRing ) | 
						
							| 172 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  𝑌  ∈  𝐵 ) | 
						
							| 173 | 63 | eqcomi | ⊢ ( Base ‘ 𝑆 )  =  𝐵 | 
						
							| 174 | 173 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( Base ‘ 𝑆 )  =  𝐵 ) | 
						
							| 175 | 174 | eleq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( 𝑌  ∈  ( Base ‘ 𝑆 )  ↔  𝑌  ∈  𝐵 ) ) | 
						
							| 176 | 172 175 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  𝑌  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 177 | 1 2 170 5 171 176 115 | fveval1fvcl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ( ( 𝑂 ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 178 | 169 177 | eqeltrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  ∧  𝑦  ∈  𝑏 )  →  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 179 | 1 2 4 5 136 137 129 | fveval1fvcl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 180 | 179 63 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 181 |  | nfcv | ⊢ Ⅎ 𝑥 𝑐 | 
						
							| 182 |  | nfcv | ⊢ Ⅎ 𝑥 𝑂 | 
						
							| 183 | 181 | nfcsb1 | ⊢ Ⅎ 𝑥 ⦋ 𝑐  /  𝑥 ⦌ 𝑀 | 
						
							| 184 | 182 183 | nffv | ⊢ Ⅎ 𝑥 ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) | 
						
							| 185 | 184 166 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) | 
						
							| 186 |  | csbeq1a | ⊢ ( 𝑥  =  𝑐  →  𝑀  =  ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) | 
						
							| 187 | 186 | fveq2d | ⊢ ( 𝑥  =  𝑐  →  ( 𝑂 ‘ 𝑀 )  =  ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ) | 
						
							| 188 | 187 | fveq1d | ⊢ ( 𝑥  =  𝑐  →  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 189 | 181 185 188 | csbhypf | ⊢ ( 𝑦  =  𝑐  →  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 190 | 58 155 161 109 178 124 125 180 189 | gsumunsn | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑆  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( ( 𝑆  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 191 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 192 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) | 
						
							| 193 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) | 
						
							| 194 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 195 | 192 193 194 | cbvmpt | ⊢ ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 196 | 195 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 197 | 196 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 198 | 191 197 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑆  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ) | 
						
							| 199 | 198 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑆  Σg  ( 𝑦  ∈  𝑏  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) )  =  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 200 | 190 199 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑆  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 201 | 200 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐  /  𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑆  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 202 | 154 201 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 203 | 192 193 194 | cbvmpt | ⊢ ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 204 | 203 | eqcomi | ⊢ ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) | 
						
							| 205 | 204 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) )  =  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) | 
						
							| 206 | 205 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( 𝑆  Σg  ( 𝑦  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ⦋ 𝑦  /  𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  =  ( 𝑆  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 207 | 202 206 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  ∧  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) | 
						
							| 208 | 207 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑏  ⊆  𝑁  ∧  𝑐  ∈  ( 𝑁  ∖  𝑏 ) ) )  →  ( ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑏  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑏  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) )  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  ( 𝑏  ∪  { 𝑐 } )  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) | 
						
							| 209 | 17 24 31 38 89 208 10 | findcard2d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑄  Σg  ( 𝑥  ∈  𝑁  ↦  𝑀 ) ) ) ‘ 𝑌 )  =  ( 𝑆  Σg  ( 𝑥  ∈  𝑁  ↦  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |