| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1gprodd.1 |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1gprodd.2 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
evl1gprodd.3 |
⊢ 𝑄 = ( mulGrp ‘ 𝑃 ) |
| 4 |
|
evl1gprodd.4 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 5 |
|
evl1gprodd.5 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 6 |
|
evl1gprodd.6 |
⊢ 𝑆 = ( mulGrp ‘ 𝑅 ) |
| 7 |
|
evl1gprodd.7 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 8 |
|
evl1gprodd.8 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
evl1gprodd.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
| 10 |
|
evl1gprodd.10 |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 11 |
|
mpteq1 |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 15 |
|
mpteq1 |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 18 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ) |
| 21 |
20
|
fveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 22 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 24 |
21 23
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 25 |
|
mpteq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ) |
| 28 |
27
|
fveq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 29 |
|
mpteq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 31 |
28 30
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 32 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑁 → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ) |
| 35 |
34
|
fveq1d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 36 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑁 → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 38 |
35 37
|
eqeq12d |
⊢ ( 𝑎 = 𝑁 → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 39 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 𝑄 Σg ∅ ) ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ) |
| 43 |
42
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) ) |
| 44 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ∅ |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ∅ ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ∅ ) ) |
| 47 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 48 |
47
|
gsum0 |
⊢ ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) ) |
| 50 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 51 |
6 50
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) |
| 52 |
51
|
eqcomi |
⊢ ( 0g ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) |
| 54 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 55 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 56 |
6
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd ) |
| 57 |
55 56
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 59 |
58 47
|
mndidcl |
⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 60 |
57 59
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 61 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 62 |
6 61
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
| 63 |
4 62
|
eqtri |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 64 |
60 63
|
eleqtrrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 65 |
51
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 66 |
65
|
eleq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ↔ ( 0g ‘ 𝑆 ) ∈ 𝐵 ) ) |
| 67 |
64 66
|
mpbird |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 68 |
1 2 4 54 5 7 67 8
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( 1r ‘ 𝑅 ) ) ) |
| 69 |
68
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 70 |
69
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) ) |
| 71 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 72 |
2 54 50 71
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 73 |
55 72
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 74 |
3 71
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑄 ) |
| 75 |
74
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑄 ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑄 ) ) |
| 77 |
76
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ) |
| 78 |
77
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) |
| 79 |
70 78
|
eqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) |
| 80 |
53 79
|
eqtrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) |
| 81 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 82 |
81
|
gsum0 |
⊢ ( 𝑄 Σg ∅ ) = ( 0g ‘ 𝑄 ) |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → ( 𝑄 Σg ∅ ) = ( 0g ‘ 𝑄 ) ) |
| 84 |
83
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) = ( 𝑄 Σg ∅ ) ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) = ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ) |
| 86 |
85
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) ) |
| 87 |
49 80 86
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 Σg ∅ ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) ) |
| 88 |
46 87
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 89 |
43 88
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 90 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑀 |
| 91 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 |
| 92 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 93 |
90 91 92
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 94 |
93
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
| 95 |
94
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) |
| 96 |
95
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ) |
| 97 |
96
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 98 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 99 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 100 |
3 99
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑄 ) |
| 101 |
2
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 102 |
7 101
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 103 |
3
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → 𝑄 ∈ CMnd ) |
| 104 |
102 103
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ CMnd ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → 𝑄 ∈ CMnd ) |
| 106 |
105
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑄 ∈ CMnd ) |
| 107 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑁 ∈ Fin ) |
| 108 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑏 ⊆ 𝑁 ) |
| 109 |
107 108
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑏 ∈ Fin ) |
| 110 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
| 111 |
108
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑦 ∈ 𝑁 ) |
| 112 |
|
rspcsbela |
⊢ ( ( 𝑦 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
| 113 |
112
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ( 𝑦 ∈ 𝑁 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) ) |
| 114 |
113
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ∧ 𝑦 ∈ 𝑁 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
| 115 |
110 111 114
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
| 116 |
3 5
|
mgpbas |
⊢ 𝑈 = ( Base ‘ 𝑄 ) |
| 117 |
116
|
eqcomi |
⊢ ( Base ‘ 𝑄 ) = 𝑈 |
| 118 |
117
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = 𝑈 ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → ( Base ‘ 𝑄 ) = 𝑈 ) |
| 120 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( Base ‘ 𝑄 ) = 𝑈 ) |
| 121 |
120
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( Base ‘ 𝑄 ) = 𝑈 ) |
| 122 |
121
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) ) |
| 123 |
115 122
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ) |
| 124 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) |
| 125 |
124
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ¬ 𝑐 ∈ 𝑏 ) |
| 126 |
124
|
eldifad |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 ∈ 𝑁 ) |
| 127 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
| 128 |
|
rspcsbela |
⊢ ( ( 𝑐 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) → ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
| 129 |
126 127 128
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
| 130 |
120
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ↔ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) ) |
| 131 |
129 130
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ) |
| 132 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑐 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) |
| 133 |
98 100 106 109 123 124 125 131 132
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) |
| 134 |
133
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) = ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ) |
| 135 |
134
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) ) |
| 136 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑅 ∈ CRing ) |
| 137 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑌 ∈ 𝐵 ) |
| 138 |
115
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ∀ 𝑦 ∈ 𝑏 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
| 139 |
116 106 109 138
|
gsummptcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ∈ 𝑈 ) |
| 140 |
92
|
equcoms |
⊢ ( 𝑦 = 𝑥 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 141 |
140
|
eqcomd |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = 𝑀 ) |
| 142 |
91 90 141
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) |
| 143 |
142
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) |
| 145 |
144
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ) |
| 146 |
145
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 147 |
139 146
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) ) |
| 148 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) |
| 149 |
129 148
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 150 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 151 |
1 2 4 5 136 137 147 149 99 150
|
evl1muld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 152 |
151
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 153 |
135 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 154 |
97 153
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 155 |
6 150
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑆 ) |
| 156 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 157 |
156
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 158 |
7 157
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 159 |
6 158
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → 𝑆 ∈ CMnd ) |
| 161 |
160
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑆 ∈ CMnd ) |
| 162 |
|
csbfv12 |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑌 ) |
| 163 |
|
csbfv2g |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) = ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
| 164 |
163
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) = ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 165 |
|
vex |
⊢ 𝑦 ∈ V |
| 166 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
| 167 |
165 166
|
csbgfi |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑌 = 𝑌 |
| 168 |
164 167
|
fveq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) |
| 169 |
162 168
|
eqtri |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) |
| 170 |
62
|
eqcomi |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑅 ) |
| 171 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑅 ∈ CRing ) |
| 172 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑌 ∈ 𝐵 ) |
| 173 |
63
|
eqcomi |
⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| 174 |
173
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( Base ‘ 𝑆 ) = 𝐵 ) |
| 175 |
174
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( 𝑌 ∈ ( Base ‘ 𝑆 ) ↔ 𝑌 ∈ 𝐵 ) ) |
| 176 |
172 175
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 177 |
1 2 170 5 171 176 115
|
fveval1fvcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
| 178 |
169 177
|
eqeltrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
| 179 |
1 2 4 5 136 137 129
|
fveval1fvcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 180 |
179 63
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
| 181 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
| 182 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑂 |
| 183 |
181
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑥 ⦌ 𝑀 |
| 184 |
182 183
|
nffv |
⊢ Ⅎ 𝑥 ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) |
| 185 |
184 166
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) |
| 186 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑐 → 𝑀 = ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) |
| 187 |
186
|
fveq2d |
⊢ ( 𝑥 = 𝑐 → ( 𝑂 ‘ 𝑀 ) = ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) |
| 188 |
187
|
fveq1d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) |
| 189 |
181 185 188
|
csbhypf |
⊢ ( 𝑦 = 𝑐 → ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) |
| 190 |
58 155 161 109 178 124 125 180 189
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 191 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 192 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) |
| 193 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) |
| 194 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
| 195 |
192 193 194
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
| 196 |
195
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 197 |
196
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 198 |
191 197
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
| 199 |
198
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 200 |
190 199
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
| 201 |
200
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 202 |
154 201
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 203 |
192 193 194
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
| 204 |
203
|
eqcomi |
⊢ ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
| 205 |
204
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 206 |
205
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 207 |
202 206
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
| 208 |
207
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
| 209 |
17 24 31 38 89 208 10
|
findcard2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |