Step |
Hyp |
Ref |
Expression |
1 |
|
evl1gprodd.1 |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1gprodd.2 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1gprodd.3 |
⊢ 𝑄 = ( mulGrp ‘ 𝑃 ) |
4 |
|
evl1gprodd.4 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
evl1gprodd.5 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
6 |
|
evl1gprodd.6 |
⊢ 𝑆 = ( mulGrp ‘ 𝑅 ) |
7 |
|
evl1gprodd.7 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
|
evl1gprodd.8 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
evl1gprodd.9 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
10 |
|
evl1gprodd.10 |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
11 |
|
mpteq1 |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
15 |
|
mpteq1 |
⊢ ( 𝑎 = ∅ → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
18 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
22 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
24 |
21 23
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
25 |
|
mpteq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ) |
28 |
27
|
fveq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
29 |
|
mpteq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
32 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑁 → ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ) |
35 |
34
|
fveq1d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
36 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑁 → ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑎 = 𝑁 → ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
38 |
35 37
|
eqeq12d |
⊢ ( 𝑎 = 𝑁 → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑎 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑎 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
39 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ |
40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ ) |
41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 𝑄 Σg ∅ ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ) |
43 |
42
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) ) |
44 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ∅ |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ∅ ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ∅ ) ) |
47 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
48 |
47
|
gsum0 |
⊢ ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) ) |
50 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
51 |
6 50
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) |
52 |
51
|
eqcomi |
⊢ ( 0g ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) |
53 |
52
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) |
54 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
55 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
56 |
6
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
58 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
59 |
58 47
|
mndidcl |
⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
60 |
57 59
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
62 |
6 61
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 ) |
63 |
4 62
|
eqtri |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
64 |
60 63
|
eleqtrrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
65 |
51
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
66 |
65
|
eleq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ↔ ( 0g ‘ 𝑆 ) ∈ 𝐵 ) ) |
67 |
64 66
|
mpbird |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
68 |
1 2 4 54 5 7 67 8
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( 1r ‘ 𝑅 ) ) ) |
69 |
68
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
70 |
69
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) ) |
71 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
72 |
2 54 50 71
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
73 |
55 72
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
74 |
3 71
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑄 ) |
75 |
74
|
a1i |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑄 ) ) |
76 |
73 75
|
eqtrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑄 ) ) |
77 |
76
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ) |
78 |
77
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) |
79 |
70 78
|
eqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) |
80 |
53 79
|
eqtrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) ) |
81 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
82 |
81
|
gsum0 |
⊢ ( 𝑄 Σg ∅ ) = ( 0g ‘ 𝑄 ) |
83 |
82
|
a1i |
⊢ ( 𝜑 → ( 𝑄 Σg ∅ ) = ( 0g ‘ 𝑄 ) ) |
84 |
83
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) = ( 𝑄 Σg ∅ ) ) |
85 |
84
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) = ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ) |
86 |
85
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 0g ‘ 𝑄 ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) ) |
87 |
49 80 86
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 Σg ∅ ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) ) |
88 |
46 87
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
89 |
43 88
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
90 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑀 |
91 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 |
92 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
93 |
90 91 92
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
94 |
93
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
95 |
94
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) |
96 |
95
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ) |
97 |
96
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) ) |
98 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
99 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
100 |
3 99
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑄 ) |
101 |
2
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
102 |
7 101
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
103 |
3
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → 𝑄 ∈ CMnd ) |
104 |
102 103
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ CMnd ) |
105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → 𝑄 ∈ CMnd ) |
106 |
105
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑄 ∈ CMnd ) |
107 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑁 ∈ Fin ) |
108 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑏 ⊆ 𝑁 ) |
109 |
107 108
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑏 ∈ Fin ) |
110 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
111 |
108
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑦 ∈ 𝑁 ) |
112 |
|
rspcsbela |
⊢ ( ( 𝑦 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
113 |
112
|
expcom |
⊢ ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 → ( 𝑦 ∈ 𝑁 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) ) |
114 |
113
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ∧ 𝑦 ∈ 𝑁 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
115 |
110 111 114
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
116 |
3 5
|
mgpbas |
⊢ 𝑈 = ( Base ‘ 𝑄 ) |
117 |
116
|
eqcomi |
⊢ ( Base ‘ 𝑄 ) = 𝑈 |
118 |
117
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = 𝑈 ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → ( Base ‘ 𝑄 ) = 𝑈 ) |
120 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( Base ‘ 𝑄 ) = 𝑈 ) |
121 |
120
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( Base ‘ 𝑄 ) = 𝑈 ) |
122 |
121
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) ) |
123 |
115 122
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ) |
124 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) |
125 |
124
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ¬ 𝑐 ∈ 𝑏 ) |
126 |
124
|
eldifad |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 ∈ 𝑁 ) |
127 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) |
128 |
|
rspcsbela |
⊢ ( ( 𝑐 ∈ 𝑁 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝑈 ) → ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
129 |
126 127 128
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
130 |
120
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ↔ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) ) |
131 |
129 130
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ ( Base ‘ 𝑄 ) ) |
132 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑐 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) |
133 |
98 100 106 109 123 124 125 131 132
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) |
134 |
133
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) = ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ) |
135 |
134
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) ) |
136 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑅 ∈ CRing ) |
137 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑌 ∈ 𝐵 ) |
138 |
115
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ∀ 𝑦 ∈ 𝑏 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ) |
139 |
116 106 109 138
|
gsummptcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ∈ 𝑈 ) |
140 |
92
|
equcoms |
⊢ ( 𝑦 = 𝑥 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
141 |
140
|
eqcomd |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = 𝑀 ) |
142 |
91 90 141
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) |
143 |
142
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) |
144 |
143
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) |
145 |
144
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ) |
146 |
145
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
147 |
139 146
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) ) |
148 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) |
149 |
129 148
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
150 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
151 |
1 2 4 5 136 137 147 149 99 150
|
evl1muld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) ) |
152 |
151
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( .r ‘ 𝑃 ) ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
153 |
135 152
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
154 |
97 153
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
155 |
6 150
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑆 ) |
156 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
157 |
156
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
158 |
7 157
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
159 |
6 158
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → 𝑆 ∈ CMnd ) |
161 |
160
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑆 ∈ CMnd ) |
162 |
|
csbfv12 |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑌 ) |
163 |
|
csbfv2g |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) = ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
164 |
163
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) = ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
165 |
|
vex |
⊢ 𝑦 ∈ V |
166 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
167 |
165 166
|
csbgfi |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑌 = 𝑌 |
168 |
164 167
|
fveq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝑂 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) |
169 |
162 168
|
eqtri |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) |
170 |
62
|
eqcomi |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑅 ) |
171 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑅 ∈ CRing ) |
172 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑌 ∈ 𝐵 ) |
173 |
63
|
eqcomi |
⊢ ( Base ‘ 𝑆 ) = 𝐵 |
174 |
173
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( Base ‘ 𝑆 ) = 𝐵 ) |
175 |
174
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( 𝑌 ∈ ( Base ‘ 𝑆 ) ↔ 𝑌 ∈ 𝐵 ) ) |
176 |
172 175
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
177 |
1 2 170 5 171 176 115
|
fveval1fvcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ( ( 𝑂 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
178 |
169 177
|
eqeltrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝑏 ) → ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
179 |
1 2 4 5 136 137 129
|
fveval1fvcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |
180 |
179 63
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
181 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
182 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑂 |
183 |
181
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑥 ⦌ 𝑀 |
184 |
182 183
|
nffv |
⊢ Ⅎ 𝑥 ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) |
185 |
184 166
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) |
186 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑐 → 𝑀 = ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) |
187 |
186
|
fveq2d |
⊢ ( 𝑥 = 𝑐 → ( 𝑂 ‘ 𝑀 ) = ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ) |
188 |
187
|
fveq1d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) |
189 |
181 185 188
|
csbhypf |
⊢ ( 𝑦 = 𝑐 → ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) |
190 |
58 155 161 109 178 124 125 180 189
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
191 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
192 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) |
193 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) |
194 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
195 |
192 193 194
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
196 |
195
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
197 |
196
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
198 |
191 197
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ) |
199 |
198
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑆 Σg ( 𝑦 ∈ 𝑏 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
200 |
190 199
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) ) |
201 |
200
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
202 |
154 201
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
203 |
192 193 194
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
204 |
203
|
eqcomi |
⊢ ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) |
205 |
204
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
206 |
205
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
207 |
202 206
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |
208 |
207
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑁 ∧ 𝑐 ∈ ( 𝑁 ∖ 𝑏 ) ) ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑏 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑏 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) ) |
209 |
17 24 31 38 89 208 10
|
findcard2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) ) |