Metamath Proof Explorer


Theorem evl1gprodd

Description: Polynomial evaluation builder for a finite group product of polynomials. (Contributed by metakunt, 29-Apr-2025)

Ref Expression
Hypotheses evl1gprodd.1 𝑂 = ( eval1𝑅 )
evl1gprodd.2 𝑃 = ( Poly1𝑅 )
evl1gprodd.3 𝑄 = ( mulGrp ‘ 𝑃 )
evl1gprodd.4 𝐵 = ( Base ‘ 𝑅 )
evl1gprodd.5 𝑈 = ( Base ‘ 𝑃 )
evl1gprodd.6 𝑆 = ( mulGrp ‘ 𝑅 )
evl1gprodd.7 ( 𝜑𝑅 ∈ CRing )
evl1gprodd.8 ( 𝜑𝑌𝐵 )
evl1gprodd.9 ( 𝜑 → ∀ 𝑥𝑁 𝑀𝑈 )
evl1gprodd.10 ( 𝜑𝑁 ∈ Fin )
Assertion evl1gprodd ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑁𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑁 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 evl1gprodd.1 𝑂 = ( eval1𝑅 )
2 evl1gprodd.2 𝑃 = ( Poly1𝑅 )
3 evl1gprodd.3 𝑄 = ( mulGrp ‘ 𝑃 )
4 evl1gprodd.4 𝐵 = ( Base ‘ 𝑅 )
5 evl1gprodd.5 𝑈 = ( Base ‘ 𝑃 )
6 evl1gprodd.6 𝑆 = ( mulGrp ‘ 𝑅 )
7 evl1gprodd.7 ( 𝜑𝑅 ∈ CRing )
8 evl1gprodd.8 ( 𝜑𝑌𝐵 )
9 evl1gprodd.9 ( 𝜑 → ∀ 𝑥𝑁 𝑀𝑈 )
10 evl1gprodd.10 ( 𝜑𝑁 ∈ Fin )
11 mpteq1 ( 𝑎 = ∅ → ( 𝑥𝑎𝑀 ) = ( 𝑥 ∈ ∅ ↦ 𝑀 ) )
12 11 oveq2d ( 𝑎 = ∅ → ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) )
13 12 fveq2d ( 𝑎 = ∅ → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) )
14 13 fveq1d ( 𝑎 = ∅ → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) )
15 mpteq1 ( 𝑎 = ∅ → ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) )
16 15 oveq2d ( 𝑎 = ∅ → ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
17 14 16 eqeq12d ( 𝑎 = ∅ → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) )
18 mpteq1 ( 𝑎 = 𝑏 → ( 𝑥𝑎𝑀 ) = ( 𝑥𝑏𝑀 ) )
19 18 oveq2d ( 𝑎 = 𝑏 → ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) = ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) )
20 19 fveq2d ( 𝑎 = 𝑏 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) )
21 20 fveq1d ( 𝑎 = 𝑏 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) )
22 mpteq1 ( 𝑎 = 𝑏 → ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) )
23 22 oveq2d ( 𝑎 = 𝑏 → ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
24 21 23 eqeq12d ( 𝑎 = 𝑏 → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) )
25 mpteq1 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥𝑎𝑀 ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) )
26 25 oveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) = ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) )
27 26 fveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) )
28 27 fveq1d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) )
29 mpteq1 ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) )
30 29 oveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
31 28 30 eqeq12d ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) )
32 mpteq1 ( 𝑎 = 𝑁 → ( 𝑥𝑎𝑀 ) = ( 𝑥𝑁𝑀 ) )
33 32 oveq2d ( 𝑎 = 𝑁 → ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) = ( 𝑄 Σg ( 𝑥𝑁𝑀 ) ) )
34 33 fveq2d ( 𝑎 = 𝑁 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑁𝑀 ) ) ) )
35 34 fveq1d ( 𝑎 = 𝑁 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑁𝑀 ) ) ) ‘ 𝑌 ) )
36 mpteq1 ( 𝑎 = 𝑁 → ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑥𝑁 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) )
37 36 oveq2d ( 𝑎 = 𝑁 → ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥𝑁 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
38 35 37 eqeq12d ( 𝑎 = 𝑁 → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑎𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑎 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ↔ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑁𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑁 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) )
39 mpt0 ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅
40 39 a1i ( 𝜑 → ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ )
41 40 oveq2d ( 𝜑 → ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 𝑄 Σg ∅ ) )
42 41 fveq2d ( 𝜑 → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) )
43 42 fveq1d ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) )
44 mpt0 ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ∅
45 44 a1i ( 𝜑 → ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ∅ )
46 45 oveq2d ( 𝜑 → ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ∅ ) )
47 eqid ( 0g𝑆 ) = ( 0g𝑆 )
48 47 gsum0 ( 𝑆 Σg ∅ ) = ( 0g𝑆 )
49 48 a1i ( 𝜑 → ( 𝑆 Σg ∅ ) = ( 0g𝑆 ) )
50 eqid ( 1r𝑅 ) = ( 1r𝑅 )
51 6 50 ringidval ( 1r𝑅 ) = ( 0g𝑆 )
52 51 eqcomi ( 0g𝑆 ) = ( 1r𝑅 )
53 52 a1i ( 𝜑 → ( 0g𝑆 ) = ( 1r𝑅 ) )
54 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
55 7 crngringd ( 𝜑𝑅 ∈ Ring )
56 6 ringmgp ( 𝑅 ∈ Ring → 𝑆 ∈ Mnd )
57 55 56 syl ( 𝜑𝑆 ∈ Mnd )
58 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
59 58 47 mndidcl ( 𝑆 ∈ Mnd → ( 0g𝑆 ) ∈ ( Base ‘ 𝑆 ) )
60 57 59 syl ( 𝜑 → ( 0g𝑆 ) ∈ ( Base ‘ 𝑆 ) )
61 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
62 6 61 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑆 )
63 4 62 eqtri 𝐵 = ( Base ‘ 𝑆 )
64 60 63 eleqtrrdi ( 𝜑 → ( 0g𝑆 ) ∈ 𝐵 )
65 51 a1i ( 𝜑 → ( 1r𝑅 ) = ( 0g𝑆 ) )
66 65 eleq1d ( 𝜑 → ( ( 1r𝑅 ) ∈ 𝐵 ↔ ( 0g𝑆 ) ∈ 𝐵 ) )
67 64 66 mpbird ( 𝜑 → ( 1r𝑅 ) ∈ 𝐵 )
68 1 2 4 54 5 7 67 8 evl1scad ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝑌 ) = ( 1r𝑅 ) ) )
69 68 simprd ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝑌 ) = ( 1r𝑅 ) )
70 69 eqcomd ( 𝜑 → ( 1r𝑅 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝑌 ) )
71 eqid ( 1r𝑃 ) = ( 1r𝑃 )
72 2 54 50 71 ply1scl1 ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) = ( 1r𝑃 ) )
73 55 72 syl ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) = ( 1r𝑃 ) )
74 3 71 ringidval ( 1r𝑃 ) = ( 0g𝑄 )
75 74 a1i ( 𝜑 → ( 1r𝑃 ) = ( 0g𝑄 ) )
76 73 75 eqtrd ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) = ( 0g𝑄 ) )
77 76 fveq2d ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) = ( 𝑂 ‘ ( 0g𝑄 ) ) )
78 77 fveq1d ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 0g𝑄 ) ) ‘ 𝑌 ) )
79 70 78 eqtrd ( 𝜑 → ( 1r𝑅 ) = ( ( 𝑂 ‘ ( 0g𝑄 ) ) ‘ 𝑌 ) )
80 53 79 eqtrd ( 𝜑 → ( 0g𝑆 ) = ( ( 𝑂 ‘ ( 0g𝑄 ) ) ‘ 𝑌 ) )
81 eqid ( 0g𝑄 ) = ( 0g𝑄 )
82 81 gsum0 ( 𝑄 Σg ∅ ) = ( 0g𝑄 )
83 82 a1i ( 𝜑 → ( 𝑄 Σg ∅ ) = ( 0g𝑄 ) )
84 83 eqcomd ( 𝜑 → ( 0g𝑄 ) = ( 𝑄 Σg ∅ ) )
85 84 fveq2d ( 𝜑 → ( 𝑂 ‘ ( 0g𝑄 ) ) = ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) )
86 85 fveq1d ( 𝜑 → ( ( 𝑂 ‘ ( 0g𝑄 ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) )
87 49 80 86 3eqtrd ( 𝜑 → ( 𝑆 Σg ∅ ) = ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) )
88 46 87 eqtr2d ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ∅ ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
89 43 88 eqtrd ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
90 nfcv 𝑦 𝑀
91 nfcsb1v 𝑥 𝑦 / 𝑥 𝑀
92 csbeq1a ( 𝑥 = 𝑦𝑀 = 𝑦 / 𝑥 𝑀 )
93 90 91 92 cbvmpt ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 )
94 93 a1i ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) )
95 94 oveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) = ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) )
96 95 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) ) )
97 96 fveq1d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) ) ‘ 𝑌 ) )
98 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
99 eqid ( .r𝑃 ) = ( .r𝑃 )
100 3 99 mgpplusg ( .r𝑃 ) = ( +g𝑄 )
101 2 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
102 7 101 syl ( 𝜑𝑃 ∈ CRing )
103 3 crngmgp ( 𝑃 ∈ CRing → 𝑄 ∈ CMnd )
104 102 103 syl ( 𝜑𝑄 ∈ CMnd )
105 104 adantr ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) → 𝑄 ∈ CMnd )
106 105 adantr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑄 ∈ CMnd )
107 10 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑁 ∈ Fin )
108 simplrl ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑏𝑁 )
109 107 108 ssfid ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑏 ∈ Fin )
110 9 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → ∀ 𝑥𝑁 𝑀𝑈 )
111 108 sselda ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑦𝑁 )
112 rspcsbela ( ( 𝑦𝑁 ∧ ∀ 𝑥𝑁 𝑀𝑈 ) → 𝑦 / 𝑥 𝑀𝑈 )
113 112 expcom ( ∀ 𝑥𝑁 𝑀𝑈 → ( 𝑦𝑁 𝑦 / 𝑥 𝑀𝑈 ) )
114 113 imp ( ( ∀ 𝑥𝑁 𝑀𝑈𝑦𝑁 ) → 𝑦 / 𝑥 𝑀𝑈 )
115 110 111 114 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑦 / 𝑥 𝑀𝑈 )
116 3 5 mgpbas 𝑈 = ( Base ‘ 𝑄 )
117 116 eqcomi ( Base ‘ 𝑄 ) = 𝑈
118 117 a1i ( 𝜑 → ( Base ‘ 𝑄 ) = 𝑈 )
119 118 adantr ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) → ( Base ‘ 𝑄 ) = 𝑈 )
120 119 adantr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( Base ‘ 𝑄 ) = 𝑈 )
121 120 adantr ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → ( Base ‘ 𝑄 ) = 𝑈 )
122 121 eleq2d ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → ( 𝑦 / 𝑥 𝑀 ∈ ( Base ‘ 𝑄 ) ↔ 𝑦 / 𝑥 𝑀𝑈 ) )
123 115 122 mpbird ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑦 / 𝑥 𝑀 ∈ ( Base ‘ 𝑄 ) )
124 simplrr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 ∈ ( 𝑁𝑏 ) )
125 124 eldifbd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ¬ 𝑐𝑏 )
126 124 eldifad ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐𝑁 )
127 9 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ∀ 𝑥𝑁 𝑀𝑈 )
128 rspcsbela ( ( 𝑐𝑁 ∧ ∀ 𝑥𝑁 𝑀𝑈 ) → 𝑐 / 𝑥 𝑀𝑈 )
129 126 127 128 syl2anc ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 / 𝑥 𝑀𝑈 )
130 120 eleq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑐 / 𝑥 𝑀 ∈ ( Base ‘ 𝑄 ) ↔ 𝑐 / 𝑥 𝑀𝑈 ) )
131 129 130 mpbird ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑐 / 𝑥 𝑀 ∈ ( Base ‘ 𝑄 ) )
132 csbeq1 ( 𝑦 = 𝑐 𝑦 / 𝑥 𝑀 = 𝑐 / 𝑥 𝑀 )
133 98 100 106 109 123 124 125 131 132 gsumunsn ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) = ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ( .r𝑃 ) 𝑐 / 𝑥 𝑀 ) )
134 133 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) ) = ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ( .r𝑃 ) 𝑐 / 𝑥 𝑀 ) ) )
135 134 fveq1d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ( .r𝑃 ) 𝑐 / 𝑥 𝑀 ) ) ‘ 𝑌 ) )
136 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑅 ∈ CRing )
137 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑌𝐵 )
138 115 ralrimiva ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ∀ 𝑦𝑏 𝑦 / 𝑥 𝑀𝑈 )
139 116 106 109 138 gsummptcl ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ∈ 𝑈 )
140 92 equcoms ( 𝑦 = 𝑥𝑀 = 𝑦 / 𝑥 𝑀 )
141 140 eqcomd ( 𝑦 = 𝑥 𝑦 / 𝑥 𝑀 = 𝑀 )
142 91 90 141 cbvmpt ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) = ( 𝑥𝑏𝑀 )
143 142 a1i ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) = ( 𝑥𝑏𝑀 ) )
144 143 oveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) = ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) )
145 144 fveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ) = ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) )
146 145 fveq1d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) )
147 139 146 jca ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ) )
148 eqidd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) )
149 129 148 jca ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑐 / 𝑥 𝑀𝑈 ∧ ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
150 eqid ( .r𝑅 ) = ( .r𝑅 )
151 1 2 4 5 136 137 147 149 99 150 evl1muld ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ( .r𝑃 ) 𝑐 / 𝑥 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ( .r𝑃 ) 𝑐 / 𝑥 𝑀 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) ) )
152 151 simprd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( ( 𝑄 Σg ( 𝑦𝑏 𝑦 / 𝑥 𝑀 ) ) ( .r𝑃 ) 𝑐 / 𝑥 𝑀 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
153 135 152 eqtrd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 𝑀 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
154 97 153 eqtrd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
155 6 150 mgpplusg ( .r𝑅 ) = ( +g𝑆 )
156 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
157 156 crngmgp ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
158 7 157 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
159 6 158 eqeltrid ( 𝜑𝑆 ∈ CMnd )
160 159 adantr ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) → 𝑆 ∈ CMnd )
161 160 adantr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → 𝑆 ∈ CMnd )
162 csbfv12 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) = ( 𝑦 / 𝑥 ( 𝑂𝑀 ) ‘ 𝑦 / 𝑥 𝑌 )
163 csbfv2g ( 𝑦 ∈ V → 𝑦 / 𝑥 ( 𝑂𝑀 ) = ( 𝑂 𝑦 / 𝑥 𝑀 ) )
164 163 elv 𝑦 / 𝑥 ( 𝑂𝑀 ) = ( 𝑂 𝑦 / 𝑥 𝑀 )
165 vex 𝑦 ∈ V
166 nfcv 𝑥 𝑌
167 165 166 csbgfi 𝑦 / 𝑥 𝑌 = 𝑌
168 164 167 fveq12i ( 𝑦 / 𝑥 ( 𝑂𝑀 ) ‘ 𝑦 / 𝑥 𝑌 ) = ( ( 𝑂 𝑦 / 𝑥 𝑀 ) ‘ 𝑌 )
169 162 168 eqtri 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 𝑦 / 𝑥 𝑀 ) ‘ 𝑌 )
170 62 eqcomi ( Base ‘ 𝑆 ) = ( Base ‘ 𝑅 )
171 7 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑅 ∈ CRing )
172 8 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑌𝐵 )
173 63 eqcomi ( Base ‘ 𝑆 ) = 𝐵
174 173 a1i ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → ( Base ‘ 𝑆 ) = 𝐵 )
175 174 eleq2d ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → ( 𝑌 ∈ ( Base ‘ 𝑆 ) ↔ 𝑌𝐵 ) )
176 172 175 mpbird ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑌 ∈ ( Base ‘ 𝑆 ) )
177 1 2 170 5 171 176 115 fveval1fvcl ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → ( ( 𝑂 𝑦 / 𝑥 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
178 169 177 eqeltrid ( ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) ∧ 𝑦𝑏 ) → 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
179 1 2 4 5 136 137 129 fveval1fvcl ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 )
180 179 63 eleqtrdi ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑆 ) )
181 nfcv 𝑥 𝑐
182 nfcv 𝑥 𝑂
183 181 nfcsb1 𝑥 𝑐 / 𝑥 𝑀
184 182 183 nffv 𝑥 ( 𝑂 𝑐 / 𝑥 𝑀 )
185 184 166 nffv 𝑥 ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 )
186 csbeq1a ( 𝑥 = 𝑐𝑀 = 𝑐 / 𝑥 𝑀 )
187 186 fveq2d ( 𝑥 = 𝑐 → ( 𝑂𝑀 ) = ( 𝑂 𝑐 / 𝑥 𝑀 ) )
188 187 fveq1d ( 𝑥 = 𝑐 → ( ( 𝑂𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) )
189 181 185 188 csbhypf ( 𝑦 = 𝑐 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) = ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) )
190 58 155 161 109 178 124 125 180 189 gsumunsn ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( ( 𝑆 Σg ( 𝑦𝑏 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
191 simpr ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
192 nfcv 𝑦 ( ( 𝑂𝑀 ) ‘ 𝑌 )
193 nfcsb1v 𝑥 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 )
194 csbeq1a ( 𝑥 = 𝑦 → ( ( 𝑂𝑀 ) ‘ 𝑌 ) = 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) )
195 192 193 194 cbvmpt ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑦𝑏 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) )
196 195 a1i ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑦𝑏 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) )
197 196 oveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑦𝑏 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
198 191 197 eqtr2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦𝑏 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) )
199 198 oveq1d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑆 Σg ( 𝑦𝑏 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
200 190 199 eqtrd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) )
201 200 eqcomd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) ( .r𝑅 ) ( ( 𝑂 𝑐 / 𝑥 𝑀 ) ‘ 𝑌 ) ) = ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
202 154 201 eqtrd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
203 192 193 194 cbvmpt ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) )
204 203 eqcomi ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) )
205 204 a1i ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) = ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) )
206 205 oveq2d ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( 𝑆 Σg ( 𝑦 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑦 / 𝑥 ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
207 202 206 eqtrd ( ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) ∧ ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )
208 207 ex ( ( 𝜑 ∧ ( 𝑏𝑁𝑐 ∈ ( 𝑁𝑏 ) ) ) → ( ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑏𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑏 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ 𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥 ∈ ( 𝑏 ∪ { 𝑐 } ) ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) ) )
209 17 24 31 38 89 208 10 findcard2d ( 𝜑 → ( ( 𝑂 ‘ ( 𝑄 Σg ( 𝑥𝑁𝑀 ) ) ) ‘ 𝑌 ) = ( 𝑆 Σg ( 𝑥𝑁 ↦ ( ( 𝑂𝑀 ) ‘ 𝑌 ) ) ) )