Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c1.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } |
2 |
|
aks6d1c1.2 |
|- S = ( Poly1 ` K ) |
3 |
|
aks6d1c1.3 |
|- B = ( Base ` S ) |
4 |
|
aks6d1c1.4 |
|- X = ( var1 ` K ) |
5 |
|
aks6d1c1.5 |
|- W = ( mulGrp ` S ) |
6 |
|
aks6d1c1.6 |
|- V = ( mulGrp ` K ) |
7 |
|
aks6d1c1.7 |
|- .^ = ( .g ` V ) |
8 |
|
aks6d1c1.8 |
|- C = ( algSc ` S ) |
9 |
|
aks6d1c1.9 |
|- D = ( .g ` W ) |
10 |
|
aks6d1c1.10 |
|- P = ( chr ` K ) |
11 |
|
aks6d1c1.11 |
|- O = ( eval1 ` K ) |
12 |
|
aks6d1c1.12 |
|- .+ = ( +g ` S ) |
13 |
|
aks6d1c1.13 |
|- ( ph -> K e. Field ) |
14 |
|
aks6d1c1.14 |
|- ( ph -> P e. Prime ) |
15 |
|
aks6d1c1.15 |
|- ( ph -> R e. NN ) |
16 |
|
aks6d1c1.16 |
|- ( ph -> N e. NN ) |
17 |
|
aks6d1c1.17 |
|- ( ph -> P || N ) |
18 |
|
aks6d1c1.18 |
|- ( ph -> ( N gcd R ) = 1 ) |
19 |
|
aks6d1c1.19 |
|- ( ph -> F : ( 0 ... A ) --> NN0 ) |
20 |
|
aks6d1c1.20 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( W gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
21 |
|
aks6d1c1.21 |
|- ( ph -> A e. NN0 ) |
22 |
|
aks6d1c1.22 |
|- ( ph -> U e. NN0 ) |
23 |
|
aks6d1c1.23 |
|- ( ph -> L e. NN0 ) |
24 |
|
aks6d1c1.24 |
|- E = ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) |
25 |
|
aks6d1c1.25 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) |
26 |
|
aks6d1c1.26 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P .^ x ) ) e. ( K RingIso K ) ) |
27 |
21
|
nn0zd |
|- ( ph -> A e. ZZ ) |
28 |
21
|
nn0ge0d |
|- ( ph -> 0 <_ A ) |
29 |
21
|
nn0red |
|- ( ph -> A e. RR ) |
30 |
29
|
leidd |
|- ( ph -> A <_ A ) |
31 |
27 28 30
|
3jca |
|- ( ph -> ( A e. ZZ /\ 0 <_ A /\ A <_ A ) ) |
32 |
|
oveq2 |
|- ( h = 0 -> ( 0 ... h ) = ( 0 ... 0 ) ) |
33 |
32
|
mpteq1d |
|- ( h = 0 -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
34 |
33
|
oveq2d |
|- ( h = 0 -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
35 |
34
|
breq2d |
|- ( h = 0 -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
36 |
|
oveq2 |
|- ( h = j -> ( 0 ... h ) = ( 0 ... j ) ) |
37 |
36
|
mpteq1d |
|- ( h = j -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
38 |
37
|
oveq2d |
|- ( h = j -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
39 |
38
|
breq2d |
|- ( h = j -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
40 |
|
oveq2 |
|- ( h = ( j + 1 ) -> ( 0 ... h ) = ( 0 ... ( j + 1 ) ) ) |
41 |
40
|
mpteq1d |
|- ( h = ( j + 1 ) -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
42 |
41
|
oveq2d |
|- ( h = ( j + 1 ) -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
43 |
42
|
breq2d |
|- ( h = ( j + 1 ) -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
44 |
|
oveq2 |
|- ( h = A -> ( 0 ... h ) = ( 0 ... A ) ) |
45 |
44
|
mpteq1d |
|- ( h = A -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
46 |
45
|
oveq2d |
|- ( h = A -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
47 |
46
|
breq2d |
|- ( h = A -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
48 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
49 |
14 48
|
syl |
|- ( ph -> P e. NN ) |
50 |
49 22
|
nnexpcld |
|- ( ph -> ( P ^ U ) e. NN ) |
51 |
49
|
nnzd |
|- ( ph -> P e. ZZ ) |
52 |
49
|
nnne0d |
|- ( ph -> P =/= 0 ) |
53 |
16
|
nnzd |
|- ( ph -> N e. ZZ ) |
54 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) |
55 |
51 52 53 54
|
syl3anc |
|- ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) |
56 |
17 55
|
mpbid |
|- ( ph -> ( N / P ) e. ZZ ) |
57 |
16
|
nnred |
|- ( ph -> N e. RR ) |
58 |
49
|
nnred |
|- ( ph -> P e. RR ) |
59 |
16
|
nngt0d |
|- ( ph -> 0 < N ) |
60 |
49
|
nngt0d |
|- ( ph -> 0 < P ) |
61 |
57 58 59 60
|
divgt0d |
|- ( ph -> 0 < ( N / P ) ) |
62 |
56 61
|
jca |
|- ( ph -> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) |
63 |
|
elnnz |
|- ( ( N / P ) e. NN <-> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) |
64 |
62 63
|
sylibr |
|- ( ph -> ( N / P ) e. NN ) |
65 |
64 23
|
nnexpcld |
|- ( ph -> ( ( N / P ) ^ L ) e. NN ) |
66 |
50 65
|
nnmulcld |
|- ( ph -> ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) e. NN ) |
67 |
24 66
|
eqeltrid |
|- ( ph -> E e. NN ) |
68 |
1 2 3 4 6 7 10 11 13 14 15 16 17 18 67
|
aks6d1c1p7 |
|- ( ph -> E .~ X ) |
69 |
13
|
fldcrngd |
|- ( ph -> K e. CRing ) |
70 |
2
|
ply1crng |
|- ( K e. CRing -> S e. CRing ) |
71 |
69 70
|
syl |
|- ( ph -> S e. CRing ) |
72 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
73 |
|
ringcmn |
|- ( S e. Ring -> S e. CMnd ) |
74 |
72 73
|
syl |
|- ( S e. CRing -> S e. CMnd ) |
75 |
71 74
|
syl |
|- ( ph -> S e. CMnd ) |
76 |
|
cmnmnd |
|- ( S e. CMnd -> S e. Mnd ) |
77 |
75 76
|
syl |
|- ( ph -> S e. Mnd ) |
78 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
79 |
69 78
|
syl |
|- ( ph -> K e. Ring ) |
80 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
81 |
4 2 80
|
vr1cl |
|- ( K e. Ring -> X e. ( Base ` S ) ) |
82 |
79 81
|
syl |
|- ( ph -> X e. ( Base ` S ) ) |
83 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
84 |
80 12 83
|
mndrid |
|- ( ( S e. Mnd /\ X e. ( Base ` S ) ) -> ( X .+ ( 0g ` S ) ) = X ) |
85 |
77 82 84
|
syl2anc |
|- ( ph -> ( X .+ ( 0g ` S ) ) = X ) |
86 |
68 85
|
breqtrrd |
|- ( ph -> E .~ ( X .+ ( 0g ` S ) ) ) |
87 |
|
eqid |
|- ( ZRHom ` K ) = ( ZRHom ` K ) |
88 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
89 |
87 88
|
zrh0 |
|- ( K e. Ring -> ( ( ZRHom ` K ) ` 0 ) = ( 0g ` K ) ) |
90 |
79 89
|
syl |
|- ( ph -> ( ( ZRHom ` K ) ` 0 ) = ( 0g ` K ) ) |
91 |
90
|
fveq2d |
|- ( ph -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) = ( C ` ( 0g ` K ) ) ) |
92 |
2 8 88 83 79
|
ply1ascl0 |
|- ( ph -> ( C ` ( 0g ` K ) ) = ( 0g ` S ) ) |
93 |
91 92
|
eqtrd |
|- ( ph -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) = ( 0g ` S ) ) |
94 |
93
|
oveq2d |
|- ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) = ( X .+ ( 0g ` S ) ) ) |
95 |
86 94
|
breqtrrd |
|- ( ph -> E .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) |
96 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
97 |
|
0red |
|- ( ph -> 0 e. RR ) |
98 |
97
|
leidd |
|- ( ph -> 0 <_ 0 ) |
99 |
96 27 96 98 28
|
elfzd |
|- ( ph -> 0 e. ( 0 ... A ) ) |
100 |
19 99
|
ffvelcdmd |
|- ( ph -> ( F ` 0 ) e. NN0 ) |
101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 95 100
|
aks6d1c1p6 |
|- ( ph -> E .~ ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) |
102 |
5
|
crngmgp |
|- ( S e. CRing -> W e. CMnd ) |
103 |
71 102
|
syl |
|- ( ph -> W e. CMnd ) |
104 |
103
|
cmnmndd |
|- ( ph -> W e. Mnd ) |
105 |
|
0z |
|- 0 e. ZZ |
106 |
105
|
a1i |
|- ( ph -> 0 e. ZZ ) |
107 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
108 |
|
0le0 |
|- 0 <_ 0 |
109 |
108
|
a1i |
|- ( ph -> 0 <_ 0 ) |
110 |
106 27 106 109 28
|
elfzd |
|- ( ph -> 0 e. ( 0 ... A ) ) |
111 |
19 110
|
ffvelcdmd |
|- ( ph -> ( F ` 0 ) e. NN0 ) |
112 |
87
|
zrhrhm |
|- ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
113 |
79 112
|
syl |
|- ( ph -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) |
114 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
115 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
116 |
114 115
|
rhmf |
|- ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
117 |
113 116
|
syl |
|- ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
118 |
117 96
|
ffvelcdmd |
|- ( ph -> ( ( ZRHom ` K ) ` 0 ) e. ( Base ` K ) ) |
119 |
2 8 115 80
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` 0 ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) e. ( Base ` S ) ) |
120 |
79 118 119
|
syl2anc |
|- ( ph -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) e. ( Base ` S ) ) |
121 |
80 12
|
mndcl |
|- ( ( S e. Mnd /\ X e. ( Base ` S ) /\ ( C ` ( ( ZRHom ` K ) ` 0 ) ) e. ( Base ` S ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) e. ( Base ` S ) ) |
122 |
77 82 120 121
|
syl3anc |
|- ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) e. ( Base ` S ) ) |
123 |
5 80
|
mgpbas |
|- ( Base ` S ) = ( Base ` W ) |
124 |
122 123
|
eleqtrdi |
|- ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) e. ( Base ` W ) ) |
125 |
107 9 104 111 124
|
mulgnn0cld |
|- ( ph -> ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) e. ( Base ` W ) ) |
126 |
|
fveq2 |
|- ( i = 0 -> ( F ` i ) = ( F ` 0 ) ) |
127 |
|
2fveq3 |
|- ( i = 0 -> ( C ` ( ( ZRHom ` K ) ` i ) ) = ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) |
128 |
127
|
oveq2d |
|- ( i = 0 -> ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) |
129 |
126 128
|
oveq12d |
|- ( i = 0 -> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) |
130 |
107 129
|
gsumsn |
|- ( ( W e. Mnd /\ 0 e. ZZ /\ ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) e. ( Base ` W ) ) -> ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) |
131 |
104 106 125 130
|
syl3anc |
|- ( ph -> ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) |
132 |
101 131
|
breqtrrd |
|- ( ph -> E .~ ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
133 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
134 |
105 133
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
135 |
134
|
a1i |
|- ( ph -> ( 0 ... 0 ) = { 0 } ) |
136 |
135
|
mpteq1d |
|- ( ph -> ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
137 |
136
|
oveq2d |
|- ( ph -> ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
138 |
132 137
|
breqtrrd |
|- ( ph -> E .~ ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
139 |
13
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> K e. Field ) |
140 |
14
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> P e. Prime ) |
141 |
15
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> R e. NN ) |
142 |
18
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( N gcd R ) = 1 ) |
143 |
17
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> P || N ) |
144 |
|
simp3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
145 |
|
nfcv |
|- F/_ k ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) |
146 |
|
nfcv |
|- F/_ i ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) |
147 |
|
fveq2 |
|- ( i = k -> ( F ` i ) = ( F ` k ) ) |
148 |
|
2fveq3 |
|- ( i = k -> ( C ` ( ( ZRHom ` K ) ` i ) ) = ( C ` ( ( ZRHom ` K ) ` k ) ) ) |
149 |
148
|
oveq2d |
|- ( i = k -> ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) |
150 |
147 149
|
oveq12d |
|- ( i = k -> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) |
151 |
145 146 150
|
cbvmpt |
|- ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) |
152 |
151
|
oveq2i |
|- ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) |
153 |
152
|
a1i |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) |
154 |
144 153
|
breqtrd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) |
155 |
13
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> K e. Field ) |
156 |
14
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> P e. Prime ) |
157 |
15
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> R e. NN ) |
158 |
16
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> N e. NN ) |
159 |
17
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> P || N ) |
160 |
18
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( N gcd R ) = 1 ) |
161 |
24
|
a1i |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E = ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) ) |
162 |
15
|
nnzd |
|- ( ph -> R e. ZZ ) |
163 |
56 162 23
|
3jca |
|- ( ph -> ( ( N / P ) e. ZZ /\ R e. ZZ /\ L e. NN0 ) ) |
164 |
162 56 53
|
3jca |
|- ( ph -> ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) ) |
165 |
53 162
|
jca |
|- ( ph -> ( N e. ZZ /\ R e. ZZ ) ) |
166 |
|
gcdcom |
|- ( ( N e. ZZ /\ R e. ZZ ) -> ( N gcd R ) = ( R gcd N ) ) |
167 |
165 166
|
syl |
|- ( ph -> ( N gcd R ) = ( R gcd N ) ) |
168 |
|
eqeq1 |
|- ( ( N gcd R ) = ( R gcd N ) -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) |
169 |
167 168
|
syl |
|- ( ph -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) |
170 |
169
|
pm5.74i |
|- ( ( ph -> ( N gcd R ) = 1 ) <-> ( ph -> ( R gcd N ) = 1 ) ) |
171 |
18 170
|
mpbi |
|- ( ph -> ( R gcd N ) = 1 ) |
172 |
57
|
recnd |
|- ( ph -> N e. CC ) |
173 |
58
|
recnd |
|- ( ph -> P e. CC ) |
174 |
97 59
|
gtned |
|- ( ph -> N =/= 0 ) |
175 |
172 172 173 174 52
|
divdiv2d |
|- ( ph -> ( N / ( N / P ) ) = ( ( N x. P ) / N ) ) |
176 |
172 173
|
mulcomd |
|- ( ph -> ( N x. P ) = ( P x. N ) ) |
177 |
176
|
oveq1d |
|- ( ph -> ( ( N x. P ) / N ) = ( ( P x. N ) / N ) ) |
178 |
173 172 172 174 174
|
divdiv2d |
|- ( ph -> ( P / ( N / N ) ) = ( ( P x. N ) / N ) ) |
179 |
178
|
eqcomd |
|- ( ph -> ( ( P x. N ) / N ) = ( P / ( N / N ) ) ) |
180 |
177 179
|
eqtrd |
|- ( ph -> ( ( N x. P ) / N ) = ( P / ( N / N ) ) ) |
181 |
172 174
|
dividd |
|- ( ph -> ( N / N ) = 1 ) |
182 |
181
|
oveq2d |
|- ( ph -> ( P / ( N / N ) ) = ( P / 1 ) ) |
183 |
173
|
div1d |
|- ( ph -> ( P / 1 ) = P ) |
184 |
182 183
|
eqtrd |
|- ( ph -> ( P / ( N / N ) ) = P ) |
185 |
184 51
|
eqeltrd |
|- ( ph -> ( P / ( N / N ) ) e. ZZ ) |
186 |
180 185
|
eqeltrd |
|- ( ph -> ( ( N x. P ) / N ) e. ZZ ) |
187 |
175 186
|
eqeltrd |
|- ( ph -> ( N / ( N / P ) ) e. ZZ ) |
188 |
97 61
|
gtned |
|- ( ph -> ( N / P ) =/= 0 ) |
189 |
|
dvdsval2 |
|- ( ( ( N / P ) e. ZZ /\ ( N / P ) =/= 0 /\ N e. ZZ ) -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) |
190 |
56 188 53 189
|
syl3anc |
|- ( ph -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) |
191 |
187 190
|
mpbird |
|- ( ph -> ( N / P ) || N ) |
192 |
171 191
|
jca |
|- ( ph -> ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) |
193 |
|
rpdvds |
|- ( ( ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) -> ( R gcd ( N / P ) ) = 1 ) |
194 |
164 192 193
|
syl2anc |
|- ( ph -> ( R gcd ( N / P ) ) = 1 ) |
195 |
162 56
|
jca |
|- ( ph -> ( R e. ZZ /\ ( N / P ) e. ZZ ) ) |
196 |
|
gcdcom |
|- ( ( R e. ZZ /\ ( N / P ) e. ZZ ) -> ( R gcd ( N / P ) ) = ( ( N / P ) gcd R ) ) |
197 |
195 196
|
syl |
|- ( ph -> ( R gcd ( N / P ) ) = ( ( N / P ) gcd R ) ) |
198 |
|
eqeq1 |
|- ( ( R gcd ( N / P ) ) = ( ( N / P ) gcd R ) -> ( ( R gcd ( N / P ) ) = 1 <-> ( ( N / P ) gcd R ) = 1 ) ) |
199 |
197 198
|
syl |
|- ( ph -> ( ( R gcd ( N / P ) ) = 1 <-> ( ( N / P ) gcd R ) = 1 ) ) |
200 |
199
|
pm5.74i |
|- ( ( ph -> ( R gcd ( N / P ) ) = 1 ) <-> ( ph -> ( ( N / P ) gcd R ) = 1 ) ) |
201 |
194 200
|
mpbi |
|- ( ph -> ( ( N / P ) gcd R ) = 1 ) |
202 |
|
rpexp1i |
|- ( ( ( N / P ) e. ZZ /\ R e. ZZ /\ L e. NN0 ) -> ( ( ( N / P ) gcd R ) = 1 -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) ) |
203 |
202
|
imp |
|- ( ( ( ( N / P ) e. ZZ /\ R e. ZZ /\ L e. NN0 ) /\ ( ( N / P ) gcd R ) = 1 ) -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) |
204 |
163 201 203
|
syl2anc |
|- ( ph -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) |
205 |
204
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) |
206 |
|
eqid |
|- ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) |
207 |
|
simpr1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> j e. ZZ ) |
208 |
207
|
peano2zd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) e. ZZ ) |
209 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208
|
aks6d1c1p2 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> P .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
210 |
22
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> U e. NN0 ) |
211 |
162 51 53
|
3jca |
|- ( ph -> ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) |
212 |
171 17
|
jca |
|- ( ph -> ( ( R gcd N ) = 1 /\ P || N ) ) |
213 |
|
rpdvds |
|- ( ( ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ P || N ) ) -> ( R gcd P ) = 1 ) |
214 |
211 212 213
|
syl2anc |
|- ( ph -> ( R gcd P ) = 1 ) |
215 |
162 51
|
jca |
|- ( ph -> ( R e. ZZ /\ P e. ZZ ) ) |
216 |
|
gcdcom |
|- ( ( R e. ZZ /\ P e. ZZ ) -> ( R gcd P ) = ( P gcd R ) ) |
217 |
215 216
|
syl |
|- ( ph -> ( R gcd P ) = ( P gcd R ) ) |
218 |
|
eqeq1 |
|- ( ( R gcd P ) = ( P gcd R ) -> ( ( R gcd P ) = 1 <-> ( P gcd R ) = 1 ) ) |
219 |
217 218
|
syl |
|- ( ph -> ( ( R gcd P ) = 1 <-> ( P gcd R ) = 1 ) ) |
220 |
219
|
pm5.74i |
|- ( ( ph -> ( R gcd P ) = 1 ) <-> ( ph -> ( P gcd R ) = 1 ) ) |
221 |
214 220
|
mpbi |
|- ( ph -> ( P gcd R ) = 1 ) |
222 |
221
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( P gcd R ) = 1 ) |
223 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 209 210 222
|
aks6d1c1p8 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( P ^ U ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
224 |
|
2fveq3 |
|- ( a = ( j + 1 ) -> ( C ` ( ( ZRHom ` K ) ` a ) ) = ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) |
225 |
224
|
oveq2d |
|- ( a = ( j + 1 ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
226 |
225
|
breq2d |
|- ( a = ( j + 1 ) -> ( N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) <-> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) |
227 |
1 2 3 4 6 7 10 11 13 14 15 16 17 18 16
|
aks6d1c1p7 |
|- ( ph -> N .~ X ) |
228 |
227 85
|
breqtrrd |
|- ( ph -> N .~ ( X .+ ( 0g ` S ) ) ) |
229 |
228 94
|
breqtrrd |
|- ( ph -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) |
230 |
229
|
adantr |
|- ( ( ph /\ a = 0 ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) |
231 |
|
simpr |
|- ( ( ph /\ a = 0 ) -> a = 0 ) |
232 |
231
|
fveq2d |
|- ( ( ph /\ a = 0 ) -> ( ( ZRHom ` K ) ` a ) = ( ( ZRHom ` K ) ` 0 ) ) |
233 |
232
|
fveq2d |
|- ( ( ph /\ a = 0 ) -> ( C ` ( ( ZRHom ` K ) ` a ) ) = ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) |
234 |
233
|
oveq2d |
|- ( ( ph /\ a = 0 ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) |
235 |
230 234
|
breqtrrd |
|- ( ( ph /\ a = 0 ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) |
236 |
235
|
ex |
|- ( ph -> ( a = 0 -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
237 |
236
|
adantr |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a = 0 -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
238 |
|
simpr |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
239 |
|
1cnd |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> 1 e. CC ) |
240 |
239
|
addlidd |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( 0 + 1 ) = 1 ) |
241 |
240
|
oveq1d |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( 0 + 1 ) ... A ) = ( 1 ... A ) ) |
242 |
241
|
eleq2d |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( ( 0 + 1 ) ... A ) <-> a e. ( 1 ... A ) ) ) |
243 |
242
|
imbi1d |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( a e. ( ( 0 + 1 ) ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) <-> ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) ) |
244 |
238 243
|
mpbird |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( ( 0 + 1 ) ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
245 |
237 244
|
jaod |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
246 |
27 28
|
jca |
|- ( ph -> ( A e. ZZ /\ 0 <_ A ) ) |
247 |
|
eluz1 |
|- ( 0 e. ZZ -> ( A e. ( ZZ>= ` 0 ) <-> ( A e. ZZ /\ 0 <_ A ) ) ) |
248 |
96 247
|
syl |
|- ( ph -> ( A e. ( ZZ>= ` 0 ) <-> ( A e. ZZ /\ 0 <_ A ) ) ) |
249 |
246 248
|
mpbird |
|- ( ph -> A e. ( ZZ>= ` 0 ) ) |
250 |
249
|
adantr |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> A e. ( ZZ>= ` 0 ) ) |
251 |
|
elfzp12 |
|- ( A e. ( ZZ>= ` 0 ) -> ( a e. ( 0 ... A ) <-> ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) ) ) |
252 |
250 251
|
syl |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( 0 ... A ) <-> ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) ) ) |
253 |
252
|
imbi1d |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( a e. ( 0 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) <-> ( ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) ) |
254 |
245 253
|
mpbird |
|- ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( 0 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
255 |
254
|
ex |
|- ( ph -> ( ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) -> ( a e. ( 0 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) ) |
256 |
255
|
ralimdv2 |
|- ( ph -> ( A. a e. ( 1 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) -> A. a e. ( 0 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) |
257 |
25 256
|
mpd |
|- ( ph -> A. a e. ( 0 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) |
258 |
257
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> A. a e. ( 0 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) |
259 |
|
0zd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 e. ZZ ) |
260 |
27
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> A e. ZZ ) |
261 |
207
|
zred |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> j e. RR ) |
262 |
|
1red |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 1 e. RR ) |
263 |
|
simpr2 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 <_ j ) |
264 |
|
0le1 |
|- 0 <_ 1 |
265 |
264
|
a1i |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 <_ 1 ) |
266 |
261 262 263 265
|
addge0d |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 <_ ( j + 1 ) ) |
267 |
|
simpr3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> j < A ) |
268 |
207 260
|
zltp1led |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j < A <-> ( j + 1 ) <_ A ) ) |
269 |
267 268
|
mpbid |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) <_ A ) |
270 |
259 260 208 266 269
|
elfzd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) e. ( 0 ... A ) ) |
271 |
226 258 270
|
rspcdva |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
272 |
26
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( x e. ( Base ` K ) |-> ( P .^ x ) ) e. ( K RingIso K ) ) |
273 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 271 272
|
aks6d1c1p3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( N / P ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
274 |
23
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> L e. NN0 ) |
275 |
201
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( N / P ) gcd R ) = 1 ) |
276 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 273 274 275
|
aks6d1c1p8 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( N / P ) ^ L ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
277 |
1 2 3 4 5 6 7 8 10 11 12 155 156 157 205 159 223 276
|
aks6d1c1p5 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
278 |
161 277
|
eqbrtrd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
279 |
19
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> F : ( 0 ... A ) --> NN0 ) |
280 |
279 270
|
ffvelcdmd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( F ` ( j + 1 ) ) e. NN0 ) |
281 |
1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 278 280
|
aks6d1c1p6 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E .~ ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) |
282 |
104
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> W e. Mnd ) |
283 |
|
ovexd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) e. _V ) |
284 |
77
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> S e. Mnd ) |
285 |
82
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> X e. ( Base ` S ) ) |
286 |
79
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> K e. Ring ) |
287 |
117
|
adantr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
288 |
287 208
|
ffvelcdmd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( ZRHom ` K ) ` ( j + 1 ) ) e. ( Base ` K ) ) |
289 |
2 8 115 80
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` ( j + 1 ) ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) e. ( Base ` S ) ) |
290 |
286 288 289
|
syl2anc |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) e. ( Base ` S ) ) |
291 |
80 12
|
mndcl |
|- ( ( S e. Mnd /\ X e. ( Base ` S ) /\ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) e. ( Base ` S ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) e. ( Base ` S ) ) |
292 |
284 285 290 291
|
syl3anc |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) e. ( Base ` S ) ) |
293 |
292 123
|
eleqtrdi |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) e. ( Base ` W ) ) |
294 |
107 9 282 280 293
|
mulgnn0cld |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) e. ( Base ` W ) ) |
295 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( F ` k ) = ( F ` ( j + 1 ) ) ) |
296 |
|
2fveq3 |
|- ( k = ( j + 1 ) -> ( C ` ( ( ZRHom ` K ) ` k ) ) = ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) |
297 |
296
|
oveq2d |
|- ( k = ( j + 1 ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) |
298 |
295 297
|
oveq12d |
|- ( k = ( j + 1 ) -> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) = ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) |
299 |
107 298
|
gsumsn |
|- ( ( W e. Mnd /\ ( j + 1 ) e. _V /\ ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) e. ( Base ` W ) ) -> ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) = ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) |
300 |
282 283 294 299
|
syl3anc |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) = ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) |
301 |
281 300
|
breqtrrd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E .~ ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) |
302 |
301
|
3adant3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) |
303 |
1 2 3 4 5 6 7 8 9 10 11 12 139 140 141 142 143 154 302
|
aks6d1c1p4 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ( +g ` W ) ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) ) |
304 |
145 146 150
|
cbvmpt |
|- ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) |
305 |
304
|
a1i |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) |
306 |
305
|
oveq2d |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) |
307 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
308 |
103
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> W e. CMnd ) |
309 |
|
simp21 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> j e. ZZ ) |
310 |
|
simp22 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> 0 <_ j ) |
311 |
309 310
|
jca |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( j e. ZZ /\ 0 <_ j ) ) |
312 |
|
elnn0z |
|- ( j e. NN0 <-> ( j e. ZZ /\ 0 <_ j ) ) |
313 |
311 312
|
sylibr |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> j e. NN0 ) |
314 |
282
|
3adant3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> W e. Mnd ) |
315 |
314
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> W e. Mnd ) |
316 |
19
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> F : ( 0 ... A ) --> NN0 ) |
317 |
316
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> F : ( 0 ... A ) --> NN0 ) |
318 |
|
0zd |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> 0 e. ZZ ) |
319 |
27
|
3ad2ant1 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> A e. ZZ ) |
320 |
319
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> A e. ZZ ) |
321 |
|
elfzelz |
|- ( k e. ( 0 ... ( j + 1 ) ) -> k e. ZZ ) |
322 |
321
|
adantl |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k e. ZZ ) |
323 |
|
elfzle1 |
|- ( k e. ( 0 ... ( j + 1 ) ) -> 0 <_ k ) |
324 |
323
|
adantl |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> 0 <_ k ) |
325 |
322
|
zred |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k e. RR ) |
326 |
309
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> j e. ZZ ) |
327 |
326
|
zred |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> j e. RR ) |
328 |
|
1red |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> 1 e. RR ) |
329 |
327 328
|
readdcld |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( j + 1 ) e. RR ) |
330 |
320
|
zred |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> A e. RR ) |
331 |
|
elfzle2 |
|- ( k e. ( 0 ... ( j + 1 ) ) -> k <_ ( j + 1 ) ) |
332 |
331
|
adantl |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k <_ ( j + 1 ) ) |
333 |
|
simpl23 |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> j < A ) |
334 |
326 320
|
zltp1led |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( j < A <-> ( j + 1 ) <_ A ) ) |
335 |
333 334
|
mpbid |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( j + 1 ) <_ A ) |
336 |
325 329 330 332 335
|
letrd |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k <_ A ) |
337 |
318 320 322 324 336
|
elfzd |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k e. ( 0 ... A ) ) |
338 |
317 337
|
ffvelcdmd |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( F ` k ) e. NN0 ) |
339 |
284
|
3adant3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> S e. Mnd ) |
340 |
339
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> S e. Mnd ) |
341 |
285
|
3adant3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> X e. ( Base ` S ) ) |
342 |
341
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> X e. ( Base ` S ) ) |
343 |
286
|
3adant3 |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> K e. Ring ) |
344 |
343
|
adantr |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> K e. Ring ) |
345 |
344 112 116
|
3syl |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) |
346 |
345 322
|
ffvelcdmd |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( ( ZRHom ` K ) ` k ) e. ( Base ` K ) ) |
347 |
2 8 115 80
|
ply1sclcl |
|- ( ( K e. Ring /\ ( ( ZRHom ` K ) ` k ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` k ) ) e. ( Base ` S ) ) |
348 |
344 346 347
|
syl2anc |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( C ` ( ( ZRHom ` K ) ` k ) ) e. ( Base ` S ) ) |
349 |
80 12
|
mndcl |
|- ( ( S e. Mnd /\ X e. ( Base ` S ) /\ ( C ` ( ( ZRHom ` K ) ` k ) ) e. ( Base ` S ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) e. ( Base ` S ) ) |
350 |
340 342 348 349
|
syl3anc |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) e. ( Base ` S ) ) |
351 |
350 123
|
eleqtrdi |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) e. ( Base ` W ) ) |
352 |
107 9 315 338 351
|
mulgnn0cld |
|- ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) e. ( Base ` W ) ) |
353 |
107 307 308 313 352
|
gsummptfzsplit |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) = ( ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ( +g ` W ) ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) ) |
354 |
306 353
|
eqtrd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ( +g ` W ) ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) ) |
355 |
303 354
|
breqtrrd |
|- ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
356 |
35 39 43 47 138 355 96 27 28
|
fzindd |
|- ( ( ph /\ ( A e. ZZ /\ 0 <_ A /\ A <_ A ) ) -> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
357 |
356
|
ex |
|- ( ph -> ( ( A e. ZZ /\ 0 <_ A /\ A <_ A ) -> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
358 |
31 357
|
mpd |
|- ( ph -> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
359 |
20
|
a1i |
|- ( ph -> G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( W gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) |
360 |
|
simplr |
|- ( ( ( ph /\ g = F ) /\ i e. ( 0 ... A ) ) -> g = F ) |
361 |
360
|
fveq1d |
|- ( ( ( ph /\ g = F ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) = ( F ` i ) ) |
362 |
361
|
oveq1d |
|- ( ( ( ph /\ g = F ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) |
363 |
362
|
mpteq2dva |
|- ( ( ph /\ g = F ) -> ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) |
364 |
363
|
oveq2d |
|- ( ( ph /\ g = F ) -> ( W gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
365 |
|
nn0ex |
|- NN0 e. _V |
366 |
365
|
a1i |
|- ( ph -> NN0 e. _V ) |
367 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
368 |
366 367
|
elmapd |
|- ( ph -> ( F e. ( NN0 ^m ( 0 ... A ) ) <-> F : ( 0 ... A ) --> NN0 ) ) |
369 |
19 368
|
mpbird |
|- ( ph -> F e. ( NN0 ^m ( 0 ... A ) ) ) |
370 |
|
ovexd |
|- ( ph -> ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. _V ) |
371 |
359 364 369 370
|
fvmptd |
|- ( ph -> ( G ` F ) = ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
372 |
358 371
|
breqtrrd |
|- ( ph -> E .~ ( G ` F ) ) |