| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c1.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } | 
						
							| 2 |  | aks6d1c1.2 |  |-  S = ( Poly1 ` K ) | 
						
							| 3 |  | aks6d1c1.3 |  |-  B = ( Base ` S ) | 
						
							| 4 |  | aks6d1c1.4 |  |-  X = ( var1 ` K ) | 
						
							| 5 |  | aks6d1c1.5 |  |-  W = ( mulGrp ` S ) | 
						
							| 6 |  | aks6d1c1.6 |  |-  V = ( mulGrp ` K ) | 
						
							| 7 |  | aks6d1c1.7 |  |-  .^ = ( .g ` V ) | 
						
							| 8 |  | aks6d1c1.8 |  |-  C = ( algSc ` S ) | 
						
							| 9 |  | aks6d1c1.9 |  |-  D = ( .g ` W ) | 
						
							| 10 |  | aks6d1c1.10 |  |-  P = ( chr ` K ) | 
						
							| 11 |  | aks6d1c1.11 |  |-  O = ( eval1 ` K ) | 
						
							| 12 |  | aks6d1c1.12 |  |-  .+ = ( +g ` S ) | 
						
							| 13 |  | aks6d1c1.13 |  |-  ( ph -> K e. Field ) | 
						
							| 14 |  | aks6d1c1.14 |  |-  ( ph -> P e. Prime ) | 
						
							| 15 |  | aks6d1c1.15 |  |-  ( ph -> R e. NN ) | 
						
							| 16 |  | aks6d1c1.16 |  |-  ( ph -> N e. NN ) | 
						
							| 17 |  | aks6d1c1.17 |  |-  ( ph -> P || N ) | 
						
							| 18 |  | aks6d1c1.18 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 19 |  | aks6d1c1.19 |  |-  ( ph -> F : ( 0 ... A ) --> NN0 ) | 
						
							| 20 |  | aks6d1c1.20 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( W gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 21 |  | aks6d1c1.21 |  |-  ( ph -> A e. NN0 ) | 
						
							| 22 |  | aks6d1c1.22 |  |-  ( ph -> U e. NN0 ) | 
						
							| 23 |  | aks6d1c1.23 |  |-  ( ph -> L e. NN0 ) | 
						
							| 24 |  | aks6d1c1.24 |  |-  E = ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) | 
						
							| 25 |  | aks6d1c1.25 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 26 |  | aks6d1c1.26 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P .^ x ) ) e. ( K RingIso K ) ) | 
						
							| 27 | 21 | nn0zd |  |-  ( ph -> A e. ZZ ) | 
						
							| 28 | 21 | nn0ge0d |  |-  ( ph -> 0 <_ A ) | 
						
							| 29 | 21 | nn0red |  |-  ( ph -> A e. RR ) | 
						
							| 30 | 29 | leidd |  |-  ( ph -> A <_ A ) | 
						
							| 31 | 27 28 30 | 3jca |  |-  ( ph -> ( A e. ZZ /\ 0 <_ A /\ A <_ A ) ) | 
						
							| 32 |  | oveq2 |  |-  ( h = 0 -> ( 0 ... h ) = ( 0 ... 0 ) ) | 
						
							| 33 | 32 | mpteq1d |  |-  ( h = 0 -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( h = 0 -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 35 | 34 | breq2d |  |-  ( h = 0 -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 36 |  | oveq2 |  |-  ( h = j -> ( 0 ... h ) = ( 0 ... j ) ) | 
						
							| 37 | 36 | mpteq1d |  |-  ( h = j -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( h = j -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 39 | 38 | breq2d |  |-  ( h = j -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 40 |  | oveq2 |  |-  ( h = ( j + 1 ) -> ( 0 ... h ) = ( 0 ... ( j + 1 ) ) ) | 
						
							| 41 | 40 | mpteq1d |  |-  ( h = ( j + 1 ) -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( h = ( j + 1 ) -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 43 | 42 | breq2d |  |-  ( h = ( j + 1 ) -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 44 |  | oveq2 |  |-  ( h = A -> ( 0 ... h ) = ( 0 ... A ) ) | 
						
							| 45 | 44 | mpteq1d |  |-  ( h = A -> ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( h = A -> ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 47 | 46 | breq2d |  |-  ( h = A -> ( E .~ ( W gsum ( i e. ( 0 ... h ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) <-> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 48 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 49 | 14 48 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 50 | 49 22 | nnexpcld |  |-  ( ph -> ( P ^ U ) e. NN ) | 
						
							| 51 | 49 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 52 | 49 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 53 | 16 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 54 |  | dvdsval2 |  |-  ( ( P e. ZZ /\ P =/= 0 /\ N e. ZZ ) -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 55 | 51 52 53 54 | syl3anc |  |-  ( ph -> ( P || N <-> ( N / P ) e. ZZ ) ) | 
						
							| 56 | 17 55 | mpbid |  |-  ( ph -> ( N / P ) e. ZZ ) | 
						
							| 57 | 16 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 58 | 49 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 59 | 16 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 60 | 49 | nngt0d |  |-  ( ph -> 0 < P ) | 
						
							| 61 | 57 58 59 60 | divgt0d |  |-  ( ph -> 0 < ( N / P ) ) | 
						
							| 62 | 56 61 | jca |  |-  ( ph -> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) | 
						
							| 63 |  | elnnz |  |-  ( ( N / P ) e. NN <-> ( ( N / P ) e. ZZ /\ 0 < ( N / P ) ) ) | 
						
							| 64 | 62 63 | sylibr |  |-  ( ph -> ( N / P ) e. NN ) | 
						
							| 65 | 64 23 | nnexpcld |  |-  ( ph -> ( ( N / P ) ^ L ) e. NN ) | 
						
							| 66 | 50 65 | nnmulcld |  |-  ( ph -> ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) e. NN ) | 
						
							| 67 | 24 66 | eqeltrid |  |-  ( ph -> E e. NN ) | 
						
							| 68 | 1 2 3 4 6 7 10 11 13 14 15 16 17 18 67 | aks6d1c1p7 |  |-  ( ph -> E .~ X ) | 
						
							| 69 | 13 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 70 | 2 | ply1crng |  |-  ( K e. CRing -> S e. CRing ) | 
						
							| 71 | 69 70 | syl |  |-  ( ph -> S e. CRing ) | 
						
							| 72 |  | crngring |  |-  ( S e. CRing -> S e. Ring ) | 
						
							| 73 |  | ringcmn |  |-  ( S e. Ring -> S e. CMnd ) | 
						
							| 74 | 72 73 | syl |  |-  ( S e. CRing -> S e. CMnd ) | 
						
							| 75 | 71 74 | syl |  |-  ( ph -> S e. CMnd ) | 
						
							| 76 |  | cmnmnd |  |-  ( S e. CMnd -> S e. Mnd ) | 
						
							| 77 | 75 76 | syl |  |-  ( ph -> S e. Mnd ) | 
						
							| 78 |  | crngring |  |-  ( K e. CRing -> K e. Ring ) | 
						
							| 79 | 69 78 | syl |  |-  ( ph -> K e. Ring ) | 
						
							| 80 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 81 | 4 2 80 | vr1cl |  |-  ( K e. Ring -> X e. ( Base ` S ) ) | 
						
							| 82 | 79 81 | syl |  |-  ( ph -> X e. ( Base ` S ) ) | 
						
							| 83 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 84 | 80 12 83 | mndrid |  |-  ( ( S e. Mnd /\ X e. ( Base ` S ) ) -> ( X .+ ( 0g ` S ) ) = X ) | 
						
							| 85 | 77 82 84 | syl2anc |  |-  ( ph -> ( X .+ ( 0g ` S ) ) = X ) | 
						
							| 86 | 68 85 | breqtrrd |  |-  ( ph -> E .~ ( X .+ ( 0g ` S ) ) ) | 
						
							| 87 |  | eqid |  |-  ( ZRHom ` K ) = ( ZRHom ` K ) | 
						
							| 88 |  | eqid |  |-  ( 0g ` K ) = ( 0g ` K ) | 
						
							| 89 | 87 88 | zrh0 |  |-  ( K e. Ring -> ( ( ZRHom ` K ) ` 0 ) = ( 0g ` K ) ) | 
						
							| 90 | 79 89 | syl |  |-  ( ph -> ( ( ZRHom ` K ) ` 0 ) = ( 0g ` K ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ph -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) = ( C ` ( 0g ` K ) ) ) | 
						
							| 92 | 2 8 88 83 79 | ply1ascl0 |  |-  ( ph -> ( C ` ( 0g ` K ) ) = ( 0g ` S ) ) | 
						
							| 93 | 91 92 | eqtrd |  |-  ( ph -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) = ( 0g ` S ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) = ( X .+ ( 0g ` S ) ) ) | 
						
							| 95 | 86 94 | breqtrrd |  |-  ( ph -> E .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) | 
						
							| 96 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 97 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 98 | 97 | leidd |  |-  ( ph -> 0 <_ 0 ) | 
						
							| 99 | 96 27 96 98 28 | elfzd |  |-  ( ph -> 0 e. ( 0 ... A ) ) | 
						
							| 100 | 19 99 | ffvelcdmd |  |-  ( ph -> ( F ` 0 ) e. NN0 ) | 
						
							| 101 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 95 100 | aks6d1c1p6 |  |-  ( ph -> E .~ ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) | 
						
							| 102 | 5 | crngmgp |  |-  ( S e. CRing -> W e. CMnd ) | 
						
							| 103 | 71 102 | syl |  |-  ( ph -> W e. CMnd ) | 
						
							| 104 | 103 | cmnmndd |  |-  ( ph -> W e. Mnd ) | 
						
							| 105 |  | 0z |  |-  0 e. ZZ | 
						
							| 106 | 105 | a1i |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 107 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 108 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 109 | 108 | a1i |  |-  ( ph -> 0 <_ 0 ) | 
						
							| 110 | 106 27 106 109 28 | elfzd |  |-  ( ph -> 0 e. ( 0 ... A ) ) | 
						
							| 111 | 19 110 | ffvelcdmd |  |-  ( ph -> ( F ` 0 ) e. NN0 ) | 
						
							| 112 | 87 | zrhrhm |  |-  ( K e. Ring -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) | 
						
							| 113 | 79 112 | syl |  |-  ( ph -> ( ZRHom ` K ) e. ( ZZring RingHom K ) ) | 
						
							| 114 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 115 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 116 | 114 115 | rhmf |  |-  ( ( ZRHom ` K ) e. ( ZZring RingHom K ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 117 | 113 116 | syl |  |-  ( ph -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 118 | 117 96 | ffvelcdmd |  |-  ( ph -> ( ( ZRHom ` K ) ` 0 ) e. ( Base ` K ) ) | 
						
							| 119 | 2 8 115 80 | ply1sclcl |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` 0 ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) e. ( Base ` S ) ) | 
						
							| 120 | 79 118 119 | syl2anc |  |-  ( ph -> ( C ` ( ( ZRHom ` K ) ` 0 ) ) e. ( Base ` S ) ) | 
						
							| 121 | 80 12 | mndcl |  |-  ( ( S e. Mnd /\ X e. ( Base ` S ) /\ ( C ` ( ( ZRHom ` K ) ` 0 ) ) e. ( Base ` S ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) e. ( Base ` S ) ) | 
						
							| 122 | 77 82 120 121 | syl3anc |  |-  ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) e. ( Base ` S ) ) | 
						
							| 123 | 5 80 | mgpbas |  |-  ( Base ` S ) = ( Base ` W ) | 
						
							| 124 | 122 123 | eleqtrdi |  |-  ( ph -> ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) e. ( Base ` W ) ) | 
						
							| 125 | 107 9 104 111 124 | mulgnn0cld |  |-  ( ph -> ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) e. ( Base ` W ) ) | 
						
							| 126 |  | fveq2 |  |-  ( i = 0 -> ( F ` i ) = ( F ` 0 ) ) | 
						
							| 127 |  | 2fveq3 |  |-  ( i = 0 -> ( C ` ( ( ZRHom ` K ) ` i ) ) = ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) | 
						
							| 128 | 127 | oveq2d |  |-  ( i = 0 -> ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) | 
						
							| 129 | 126 128 | oveq12d |  |-  ( i = 0 -> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) | 
						
							| 130 | 107 129 | gsumsn |  |-  ( ( W e. Mnd /\ 0 e. ZZ /\ ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) e. ( Base ` W ) ) -> ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) | 
						
							| 131 | 104 106 125 130 | syl3anc |  |-  ( ph -> ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( F ` 0 ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) ) | 
						
							| 132 | 101 131 | breqtrrd |  |-  ( ph -> E .~ ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 133 |  | fzsn |  |-  ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) | 
						
							| 134 | 105 133 | ax-mp |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 135 | 134 | a1i |  |-  ( ph -> ( 0 ... 0 ) = { 0 } ) | 
						
							| 136 | 135 | mpteq1d |  |-  ( ph -> ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ph -> ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. { 0 } |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 138 | 132 137 | breqtrrd |  |-  ( ph -> E .~ ( W gsum ( i e. ( 0 ... 0 ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 139 | 13 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> K e. Field ) | 
						
							| 140 | 14 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> P e. Prime ) | 
						
							| 141 | 15 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> R e. NN ) | 
						
							| 142 | 18 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( N gcd R ) = 1 ) | 
						
							| 143 | 17 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> P || N ) | 
						
							| 144 |  | simp3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 145 |  | nfcv |  |-  F/_ k ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) | 
						
							| 146 |  | nfcv |  |-  F/_ i ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) | 
						
							| 147 |  | fveq2 |  |-  ( i = k -> ( F ` i ) = ( F ` k ) ) | 
						
							| 148 |  | 2fveq3 |  |-  ( i = k -> ( C ` ( ( ZRHom ` K ) ` i ) ) = ( C ` ( ( ZRHom ` K ) ` k ) ) ) | 
						
							| 149 | 148 | oveq2d |  |-  ( i = k -> ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) | 
						
							| 150 | 147 149 | oveq12d |  |-  ( i = k -> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) | 
						
							| 151 | 145 146 150 | cbvmpt |  |-  ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) | 
						
							| 152 | 151 | oveq2i |  |-  ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) | 
						
							| 153 | 152 | a1i |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) | 
						
							| 154 | 144 153 | breqtrd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) | 
						
							| 155 | 13 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> K e. Field ) | 
						
							| 156 | 14 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> P e. Prime ) | 
						
							| 157 | 15 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> R e. NN ) | 
						
							| 158 | 16 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> N e. NN ) | 
						
							| 159 | 17 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> P || N ) | 
						
							| 160 | 18 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( N gcd R ) = 1 ) | 
						
							| 161 | 24 | a1i |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E = ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) ) | 
						
							| 162 | 15 | nnzd |  |-  ( ph -> R e. ZZ ) | 
						
							| 163 | 56 162 23 | 3jca |  |-  ( ph -> ( ( N / P ) e. ZZ /\ R e. ZZ /\ L e. NN0 ) ) | 
						
							| 164 | 162 56 53 | 3jca |  |-  ( ph -> ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 165 | 53 162 | jca |  |-  ( ph -> ( N e. ZZ /\ R e. ZZ ) ) | 
						
							| 166 |  | gcdcom |  |-  ( ( N e. ZZ /\ R e. ZZ ) -> ( N gcd R ) = ( R gcd N ) ) | 
						
							| 167 | 165 166 | syl |  |-  ( ph -> ( N gcd R ) = ( R gcd N ) ) | 
						
							| 168 |  | eqeq1 |  |-  ( ( N gcd R ) = ( R gcd N ) -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) | 
						
							| 169 | 167 168 | syl |  |-  ( ph -> ( ( N gcd R ) = 1 <-> ( R gcd N ) = 1 ) ) | 
						
							| 170 | 169 | pm5.74i |  |-  ( ( ph -> ( N gcd R ) = 1 ) <-> ( ph -> ( R gcd N ) = 1 ) ) | 
						
							| 171 | 18 170 | mpbi |  |-  ( ph -> ( R gcd N ) = 1 ) | 
						
							| 172 | 57 | recnd |  |-  ( ph -> N e. CC ) | 
						
							| 173 | 58 | recnd |  |-  ( ph -> P e. CC ) | 
						
							| 174 | 97 59 | gtned |  |-  ( ph -> N =/= 0 ) | 
						
							| 175 | 172 172 173 174 52 | divdiv2d |  |-  ( ph -> ( N / ( N / P ) ) = ( ( N x. P ) / N ) ) | 
						
							| 176 | 172 173 | mulcomd |  |-  ( ph -> ( N x. P ) = ( P x. N ) ) | 
						
							| 177 | 176 | oveq1d |  |-  ( ph -> ( ( N x. P ) / N ) = ( ( P x. N ) / N ) ) | 
						
							| 178 | 173 172 172 174 174 | divdiv2d |  |-  ( ph -> ( P / ( N / N ) ) = ( ( P x. N ) / N ) ) | 
						
							| 179 | 178 | eqcomd |  |-  ( ph -> ( ( P x. N ) / N ) = ( P / ( N / N ) ) ) | 
						
							| 180 | 177 179 | eqtrd |  |-  ( ph -> ( ( N x. P ) / N ) = ( P / ( N / N ) ) ) | 
						
							| 181 | 172 174 | dividd |  |-  ( ph -> ( N / N ) = 1 ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ph -> ( P / ( N / N ) ) = ( P / 1 ) ) | 
						
							| 183 | 173 | div1d |  |-  ( ph -> ( P / 1 ) = P ) | 
						
							| 184 | 182 183 | eqtrd |  |-  ( ph -> ( P / ( N / N ) ) = P ) | 
						
							| 185 | 184 51 | eqeltrd |  |-  ( ph -> ( P / ( N / N ) ) e. ZZ ) | 
						
							| 186 | 180 185 | eqeltrd |  |-  ( ph -> ( ( N x. P ) / N ) e. ZZ ) | 
						
							| 187 | 175 186 | eqeltrd |  |-  ( ph -> ( N / ( N / P ) ) e. ZZ ) | 
						
							| 188 | 97 61 | gtned |  |-  ( ph -> ( N / P ) =/= 0 ) | 
						
							| 189 |  | dvdsval2 |  |-  ( ( ( N / P ) e. ZZ /\ ( N / P ) =/= 0 /\ N e. ZZ ) -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) | 
						
							| 190 | 56 188 53 189 | syl3anc |  |-  ( ph -> ( ( N / P ) || N <-> ( N / ( N / P ) ) e. ZZ ) ) | 
						
							| 191 | 187 190 | mpbird |  |-  ( ph -> ( N / P ) || N ) | 
						
							| 192 | 171 191 | jca |  |-  ( ph -> ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) | 
						
							| 193 |  | rpdvds |  |-  ( ( ( R e. ZZ /\ ( N / P ) e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ ( N / P ) || N ) ) -> ( R gcd ( N / P ) ) = 1 ) | 
						
							| 194 | 164 192 193 | syl2anc |  |-  ( ph -> ( R gcd ( N / P ) ) = 1 ) | 
						
							| 195 | 162 56 | jca |  |-  ( ph -> ( R e. ZZ /\ ( N / P ) e. ZZ ) ) | 
						
							| 196 |  | gcdcom |  |-  ( ( R e. ZZ /\ ( N / P ) e. ZZ ) -> ( R gcd ( N / P ) ) = ( ( N / P ) gcd R ) ) | 
						
							| 197 | 195 196 | syl |  |-  ( ph -> ( R gcd ( N / P ) ) = ( ( N / P ) gcd R ) ) | 
						
							| 198 |  | eqeq1 |  |-  ( ( R gcd ( N / P ) ) = ( ( N / P ) gcd R ) -> ( ( R gcd ( N / P ) ) = 1 <-> ( ( N / P ) gcd R ) = 1 ) ) | 
						
							| 199 | 197 198 | syl |  |-  ( ph -> ( ( R gcd ( N / P ) ) = 1 <-> ( ( N / P ) gcd R ) = 1 ) ) | 
						
							| 200 | 199 | pm5.74i |  |-  ( ( ph -> ( R gcd ( N / P ) ) = 1 ) <-> ( ph -> ( ( N / P ) gcd R ) = 1 ) ) | 
						
							| 201 | 194 200 | mpbi |  |-  ( ph -> ( ( N / P ) gcd R ) = 1 ) | 
						
							| 202 |  | rpexp1i |  |-  ( ( ( N / P ) e. ZZ /\ R e. ZZ /\ L e. NN0 ) -> ( ( ( N / P ) gcd R ) = 1 -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) ) | 
						
							| 203 | 202 | imp |  |-  ( ( ( ( N / P ) e. ZZ /\ R e. ZZ /\ L e. NN0 ) /\ ( ( N / P ) gcd R ) = 1 ) -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) | 
						
							| 204 | 163 201 203 | syl2anc |  |-  ( ph -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) | 
						
							| 205 | 204 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( ( N / P ) ^ L ) gcd R ) = 1 ) | 
						
							| 206 |  | eqid |  |-  ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) | 
						
							| 207 |  | simpr1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> j e. ZZ ) | 
						
							| 208 | 207 | peano2zd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) e. ZZ ) | 
						
							| 209 | 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 | aks6d1c1p2 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> P .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 210 | 22 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> U e. NN0 ) | 
						
							| 211 | 162 51 53 | 3jca |  |-  ( ph -> ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) | 
						
							| 212 | 171 17 | jca |  |-  ( ph -> ( ( R gcd N ) = 1 /\ P || N ) ) | 
						
							| 213 |  | rpdvds |  |-  ( ( ( R e. ZZ /\ P e. ZZ /\ N e. ZZ ) /\ ( ( R gcd N ) = 1 /\ P || N ) ) -> ( R gcd P ) = 1 ) | 
						
							| 214 | 211 212 213 | syl2anc |  |-  ( ph -> ( R gcd P ) = 1 ) | 
						
							| 215 | 162 51 | jca |  |-  ( ph -> ( R e. ZZ /\ P e. ZZ ) ) | 
						
							| 216 |  | gcdcom |  |-  ( ( R e. ZZ /\ P e. ZZ ) -> ( R gcd P ) = ( P gcd R ) ) | 
						
							| 217 | 215 216 | syl |  |-  ( ph -> ( R gcd P ) = ( P gcd R ) ) | 
						
							| 218 |  | eqeq1 |  |-  ( ( R gcd P ) = ( P gcd R ) -> ( ( R gcd P ) = 1 <-> ( P gcd R ) = 1 ) ) | 
						
							| 219 | 217 218 | syl |  |-  ( ph -> ( ( R gcd P ) = 1 <-> ( P gcd R ) = 1 ) ) | 
						
							| 220 | 219 | pm5.74i |  |-  ( ( ph -> ( R gcd P ) = 1 ) <-> ( ph -> ( P gcd R ) = 1 ) ) | 
						
							| 221 | 214 220 | mpbi |  |-  ( ph -> ( P gcd R ) = 1 ) | 
						
							| 222 | 221 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( P gcd R ) = 1 ) | 
						
							| 223 | 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 209 210 222 | aks6d1c1p8 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( P ^ U ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 224 |  | 2fveq3 |  |-  ( a = ( j + 1 ) -> ( C ` ( ( ZRHom ` K ) ` a ) ) = ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) | 
						
							| 225 | 224 | oveq2d |  |-  ( a = ( j + 1 ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 226 | 225 | breq2d |  |-  ( a = ( j + 1 ) -> ( N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) <-> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) | 
						
							| 227 | 1 2 3 4 6 7 10 11 13 14 15 16 17 18 16 | aks6d1c1p7 |  |-  ( ph -> N .~ X ) | 
						
							| 228 | 227 85 | breqtrrd |  |-  ( ph -> N .~ ( X .+ ( 0g ` S ) ) ) | 
						
							| 229 | 228 94 | breqtrrd |  |-  ( ph -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) | 
						
							| 230 | 229 | adantr |  |-  ( ( ph /\ a = 0 ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) | 
						
							| 231 |  | simpr |  |-  ( ( ph /\ a = 0 ) -> a = 0 ) | 
						
							| 232 | 231 | fveq2d |  |-  ( ( ph /\ a = 0 ) -> ( ( ZRHom ` K ) ` a ) = ( ( ZRHom ` K ) ` 0 ) ) | 
						
							| 233 | 232 | fveq2d |  |-  ( ( ph /\ a = 0 ) -> ( C ` ( ( ZRHom ` K ) ` a ) ) = ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) | 
						
							| 234 | 233 | oveq2d |  |-  ( ( ph /\ a = 0 ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` 0 ) ) ) ) | 
						
							| 235 | 230 234 | breqtrrd |  |-  ( ( ph /\ a = 0 ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 236 | 235 | ex |  |-  ( ph -> ( a = 0 -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 237 | 236 | adantr |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a = 0 -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 238 |  | simpr |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 239 |  | 1cnd |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> 1 e. CC ) | 
						
							| 240 | 239 | addlidd |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( 0 + 1 ) = 1 ) | 
						
							| 241 | 240 | oveq1d |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( 0 + 1 ) ... A ) = ( 1 ... A ) ) | 
						
							| 242 | 241 | eleq2d |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( ( 0 + 1 ) ... A ) <-> a e. ( 1 ... A ) ) ) | 
						
							| 243 | 242 | imbi1d |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( a e. ( ( 0 + 1 ) ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) <-> ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) ) | 
						
							| 244 | 238 243 | mpbird |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( ( 0 + 1 ) ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 245 | 237 244 | jaod |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 246 | 27 28 | jca |  |-  ( ph -> ( A e. ZZ /\ 0 <_ A ) ) | 
						
							| 247 |  | eluz1 |  |-  ( 0 e. ZZ -> ( A e. ( ZZ>= ` 0 ) <-> ( A e. ZZ /\ 0 <_ A ) ) ) | 
						
							| 248 | 96 247 | syl |  |-  ( ph -> ( A e. ( ZZ>= ` 0 ) <-> ( A e. ZZ /\ 0 <_ A ) ) ) | 
						
							| 249 | 246 248 | mpbird |  |-  ( ph -> A e. ( ZZ>= ` 0 ) ) | 
						
							| 250 | 249 | adantr |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> A e. ( ZZ>= ` 0 ) ) | 
						
							| 251 |  | elfzp12 |  |-  ( A e. ( ZZ>= ` 0 ) -> ( a e. ( 0 ... A ) <-> ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) ) ) | 
						
							| 252 | 250 251 | syl |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( 0 ... A ) <-> ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) ) ) | 
						
							| 253 | 252 | imbi1d |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( ( a e. ( 0 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) <-> ( ( a = 0 \/ a e. ( ( 0 + 1 ) ... A ) ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) ) | 
						
							| 254 | 245 253 | mpbird |  |-  ( ( ph /\ ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) -> ( a e. ( 0 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 255 | 254 | ex |  |-  ( ph -> ( ( a e. ( 1 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) -> ( a e. ( 0 ... A ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) ) | 
						
							| 256 | 255 | ralimdv2 |  |-  ( ph -> ( A. a e. ( 1 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) -> A. a e. ( 0 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) ) | 
						
							| 257 | 25 256 | mpd |  |-  ( ph -> A. a e. ( 0 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 258 | 257 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> A. a e. ( 0 ... A ) N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 259 |  | 0zd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 e. ZZ ) | 
						
							| 260 | 27 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> A e. ZZ ) | 
						
							| 261 | 207 | zred |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> j e. RR ) | 
						
							| 262 |  | 1red |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 1 e. RR ) | 
						
							| 263 |  | simpr2 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 <_ j ) | 
						
							| 264 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 265 | 264 | a1i |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 <_ 1 ) | 
						
							| 266 | 261 262 263 265 | addge0d |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> 0 <_ ( j + 1 ) ) | 
						
							| 267 |  | simpr3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> j < A ) | 
						
							| 268 | 207 260 | zltp1led |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j < A <-> ( j + 1 ) <_ A ) ) | 
						
							| 269 | 267 268 | mpbid |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) <_ A ) | 
						
							| 270 | 259 260 208 266 269 | elfzd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) e. ( 0 ... A ) ) | 
						
							| 271 | 226 258 270 | rspcdva |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> N .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 272 | 26 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( x e. ( Base ` K ) |-> ( P .^ x ) ) e. ( K RingIso K ) ) | 
						
							| 273 | 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 160 159 206 208 271 272 | aks6d1c1p3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( N / P ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 274 | 23 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> L e. NN0 ) | 
						
							| 275 | 201 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( N / P ) gcd R ) = 1 ) | 
						
							| 276 | 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 273 274 275 | aks6d1c1p8 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( N / P ) ^ L ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 277 | 1 2 3 4 5 6 7 8 10 11 12 155 156 157 205 159 223 276 | aks6d1c1p5 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( P ^ U ) x. ( ( N / P ) ^ L ) ) .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 278 | 161 277 | eqbrtrd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E .~ ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 279 | 19 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> F : ( 0 ... A ) --> NN0 ) | 
						
							| 280 | 279 270 | ffvelcdmd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( F ` ( j + 1 ) ) e. NN0 ) | 
						
							| 281 | 1 2 3 4 5 6 7 8 9 10 11 12 155 156 157 158 159 160 278 280 | aks6d1c1p6 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E .~ ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) | 
						
							| 282 | 104 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> W e. Mnd ) | 
						
							| 283 |  | ovexd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( j + 1 ) e. _V ) | 
						
							| 284 | 77 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> S e. Mnd ) | 
						
							| 285 | 82 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> X e. ( Base ` S ) ) | 
						
							| 286 | 79 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> K e. Ring ) | 
						
							| 287 | 117 | adantr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 288 | 287 208 | ffvelcdmd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( ZRHom ` K ) ` ( j + 1 ) ) e. ( Base ` K ) ) | 
						
							| 289 | 2 8 115 80 | ply1sclcl |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` ( j + 1 ) ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) e. ( Base ` S ) ) | 
						
							| 290 | 286 288 289 | syl2anc |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) e. ( Base ` S ) ) | 
						
							| 291 | 80 12 | mndcl |  |-  ( ( S e. Mnd /\ X e. ( Base ` S ) /\ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) e. ( Base ` S ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) e. ( Base ` S ) ) | 
						
							| 292 | 284 285 290 291 | syl3anc |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) e. ( Base ` S ) ) | 
						
							| 293 | 292 123 | eleqtrdi |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) e. ( Base ` W ) ) | 
						
							| 294 | 107 9 282 280 293 | mulgnn0cld |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) e. ( Base ` W ) ) | 
						
							| 295 |  | fveq2 |  |-  ( k = ( j + 1 ) -> ( F ` k ) = ( F ` ( j + 1 ) ) ) | 
						
							| 296 |  | 2fveq3 |  |-  ( k = ( j + 1 ) -> ( C ` ( ( ZRHom ` K ) ` k ) ) = ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) | 
						
							| 297 | 296 | oveq2d |  |-  ( k = ( j + 1 ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) = ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) | 
						
							| 298 | 295 297 | oveq12d |  |-  ( k = ( j + 1 ) -> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) = ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) | 
						
							| 299 | 107 298 | gsumsn |  |-  ( ( W e. Mnd /\ ( j + 1 ) e. _V /\ ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) e. ( Base ` W ) ) -> ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) = ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) | 
						
							| 300 | 282 283 294 299 | syl3anc |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) = ( ( F ` ( j + 1 ) ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` ( j + 1 ) ) ) ) ) ) | 
						
							| 301 | 281 300 | breqtrrd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) ) -> E .~ ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) | 
						
							| 302 | 301 | 3adant3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) | 
						
							| 303 | 1 2 3 4 5 6 7 8 9 10 11 12 139 140 141 142 143 154 302 | aks6d1c1p4 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ( +g ` W ) ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) ) | 
						
							| 304 | 145 146 150 | cbvmpt |  |-  ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) | 
						
							| 305 | 304 | a1i |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) | 
						
							| 306 | 305 | oveq2d |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) | 
						
							| 307 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 308 | 103 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> W e. CMnd ) | 
						
							| 309 |  | simp21 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> j e. ZZ ) | 
						
							| 310 |  | simp22 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> 0 <_ j ) | 
						
							| 311 | 309 310 | jca |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( j e. ZZ /\ 0 <_ j ) ) | 
						
							| 312 |  | elnn0z |  |-  ( j e. NN0 <-> ( j e. ZZ /\ 0 <_ j ) ) | 
						
							| 313 | 311 312 | sylibr |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> j e. NN0 ) | 
						
							| 314 | 282 | 3adant3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> W e. Mnd ) | 
						
							| 315 | 314 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> W e. Mnd ) | 
						
							| 316 | 19 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> F : ( 0 ... A ) --> NN0 ) | 
						
							| 317 | 316 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> F : ( 0 ... A ) --> NN0 ) | 
						
							| 318 |  | 0zd |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> 0 e. ZZ ) | 
						
							| 319 | 27 | 3ad2ant1 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> A e. ZZ ) | 
						
							| 320 | 319 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> A e. ZZ ) | 
						
							| 321 |  | elfzelz |  |-  ( k e. ( 0 ... ( j + 1 ) ) -> k e. ZZ ) | 
						
							| 322 | 321 | adantl |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k e. ZZ ) | 
						
							| 323 |  | elfzle1 |  |-  ( k e. ( 0 ... ( j + 1 ) ) -> 0 <_ k ) | 
						
							| 324 | 323 | adantl |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> 0 <_ k ) | 
						
							| 325 | 322 | zred |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k e. RR ) | 
						
							| 326 | 309 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> j e. ZZ ) | 
						
							| 327 | 326 | zred |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> j e. RR ) | 
						
							| 328 |  | 1red |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> 1 e. RR ) | 
						
							| 329 | 327 328 | readdcld |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( j + 1 ) e. RR ) | 
						
							| 330 | 320 | zred |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> A e. RR ) | 
						
							| 331 |  | elfzle2 |  |-  ( k e. ( 0 ... ( j + 1 ) ) -> k <_ ( j + 1 ) ) | 
						
							| 332 | 331 | adantl |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k <_ ( j + 1 ) ) | 
						
							| 333 |  | simpl23 |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> j < A ) | 
						
							| 334 | 326 320 | zltp1led |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( j < A <-> ( j + 1 ) <_ A ) ) | 
						
							| 335 | 333 334 | mpbid |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( j + 1 ) <_ A ) | 
						
							| 336 | 325 329 330 332 335 | letrd |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k <_ A ) | 
						
							| 337 | 318 320 322 324 336 | elfzd |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> k e. ( 0 ... A ) ) | 
						
							| 338 | 317 337 | ffvelcdmd |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( F ` k ) e. NN0 ) | 
						
							| 339 | 284 | 3adant3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> S e. Mnd ) | 
						
							| 340 | 339 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> S e. Mnd ) | 
						
							| 341 | 285 | 3adant3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> X e. ( Base ` S ) ) | 
						
							| 342 | 341 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> X e. ( Base ` S ) ) | 
						
							| 343 | 286 | 3adant3 |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> K e. Ring ) | 
						
							| 344 | 343 | adantr |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> K e. Ring ) | 
						
							| 345 | 344 112 116 | 3syl |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( ZRHom ` K ) : ZZ --> ( Base ` K ) ) | 
						
							| 346 | 345 322 | ffvelcdmd |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( ( ZRHom ` K ) ` k ) e. ( Base ` K ) ) | 
						
							| 347 | 2 8 115 80 | ply1sclcl |  |-  ( ( K e. Ring /\ ( ( ZRHom ` K ) ` k ) e. ( Base ` K ) ) -> ( C ` ( ( ZRHom ` K ) ` k ) ) e. ( Base ` S ) ) | 
						
							| 348 | 344 346 347 | syl2anc |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( C ` ( ( ZRHom ` K ) ` k ) ) e. ( Base ` S ) ) | 
						
							| 349 | 80 12 | mndcl |  |-  ( ( S e. Mnd /\ X e. ( Base ` S ) /\ ( C ` ( ( ZRHom ` K ) ` k ) ) e. ( Base ` S ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) e. ( Base ` S ) ) | 
						
							| 350 | 340 342 348 349 | syl3anc |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) e. ( Base ` S ) ) | 
						
							| 351 | 350 123 | eleqtrdi |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) e. ( Base ` W ) ) | 
						
							| 352 | 107 9 315 338 351 | mulgnn0cld |  |-  ( ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) /\ k e. ( 0 ... ( j + 1 ) ) ) -> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) e. ( Base ` W ) ) | 
						
							| 353 | 107 307 308 313 352 | gsummptfzsplit |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( k e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) = ( ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ( +g ` W ) ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) ) | 
						
							| 354 | 306 353 | eqtrd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( ( W gsum ( k e. ( 0 ... j ) |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ( +g ` W ) ( W gsum ( k e. { ( j + 1 ) } |-> ( ( F ` k ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` k ) ) ) ) ) ) ) ) | 
						
							| 355 | 303 354 | breqtrrd |  |-  ( ( ph /\ ( j e. ZZ /\ 0 <_ j /\ j < A ) /\ E .~ ( W gsum ( i e. ( 0 ... j ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) -> E .~ ( W gsum ( i e. ( 0 ... ( j + 1 ) ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 356 | 35 39 43 47 138 355 96 27 28 | fzindd |  |-  ( ( ph /\ ( A e. ZZ /\ 0 <_ A /\ A <_ A ) ) -> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 357 | 356 | ex |  |-  ( ph -> ( ( A e. ZZ /\ 0 <_ A /\ A <_ A ) -> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 358 | 31 357 | mpd |  |-  ( ph -> E .~ ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 359 | 20 | a1i |  |-  ( ph -> G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( W gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) ) | 
						
							| 360 |  | simplr |  |-  ( ( ( ph /\ g = F ) /\ i e. ( 0 ... A ) ) -> g = F ) | 
						
							| 361 | 360 | fveq1d |  |-  ( ( ( ph /\ g = F ) /\ i e. ( 0 ... A ) ) -> ( g ` i ) = ( F ` i ) ) | 
						
							| 362 | 361 | oveq1d |  |-  ( ( ( ph /\ g = F ) /\ i e. ( 0 ... A ) ) -> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) = ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) | 
						
							| 363 | 362 | mpteq2dva |  |-  ( ( ph /\ g = F ) -> ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) = ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) | 
						
							| 364 | 363 | oveq2d |  |-  ( ( ph /\ g = F ) -> ( W gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) = ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 365 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 366 | 365 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 367 |  | ovexd |  |-  ( ph -> ( 0 ... A ) e. _V ) | 
						
							| 368 | 366 367 | elmapd |  |-  ( ph -> ( F e. ( NN0 ^m ( 0 ... A ) ) <-> F : ( 0 ... A ) --> NN0 ) ) | 
						
							| 369 | 19 368 | mpbird |  |-  ( ph -> F e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 370 |  | ovexd |  |-  ( ph -> ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) e. _V ) | 
						
							| 371 | 359 364 369 370 | fvmptd |  |-  ( ph -> ( G ` F ) = ( W gsum ( i e. ( 0 ... A ) |-> ( ( F ` i ) D ( X .+ ( C ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 372 | 358 371 | breqtrrd |  |-  ( ph -> E .~ ( G ` F ) ) |