Metamath Proof Explorer


Theorem ply1ascl0

Description: The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ply1ascl0.w
|- W = ( Poly1 ` R )
ply1ascl0.a
|- A = ( algSc ` W )
ply1ascl0.o
|- O = ( 0g ` R )
ply1ascl0.1
|- .0. = ( 0g ` W )
ply1ascl0.r
|- ( ph -> R e. Ring )
Assertion ply1ascl0
|- ( ph -> ( A ` O ) = .0. )

Proof

Step Hyp Ref Expression
1 ply1ascl0.w
 |-  W = ( Poly1 ` R )
2 ply1ascl0.a
 |-  A = ( algSc ` W )
3 ply1ascl0.o
 |-  O = ( 0g ` R )
4 ply1ascl0.1
 |-  .0. = ( 0g ` W )
5 ply1ascl0.r
 |-  ( ph -> R e. Ring )
6 1 ply1sca
 |-  ( R e. Ring -> R = ( Scalar ` W ) )
7 5 6 syl
 |-  ( ph -> R = ( Scalar ` W ) )
8 7 fveq2d
 |-  ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` W ) ) )
9 3 8 eqtrid
 |-  ( ph -> O = ( 0g ` ( Scalar ` W ) ) )
10 9 fveq2d
 |-  ( ph -> ( ( algSc ` W ) ` O ) = ( ( algSc ` W ) ` ( 0g ` ( Scalar ` W ) ) ) )
11 eqid
 |-  ( algSc ` W ) = ( algSc ` W )
12 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
13 1 ply1lmod
 |-  ( R e. Ring -> W e. LMod )
14 5 13 syl
 |-  ( ph -> W e. LMod )
15 1 ply1ring
 |-  ( R e. Ring -> W e. Ring )
16 5 15 syl
 |-  ( ph -> W e. Ring )
17 11 12 14 16 ascl0
 |-  ( ph -> ( ( algSc ` W ) ` ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` W ) )
18 10 17 eqtrd
 |-  ( ph -> ( ( algSc ` W ) ` O ) = ( 0g ` W ) )
19 2 fveq1i
 |-  ( A ` O ) = ( ( algSc ` W ) ` O )
20 18 19 4 3eqtr4g
 |-  ( ph -> ( A ` O ) = .0. )