| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c1p4.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. B /\ A. y e. ( V PrimRoots R ) ( e .^ ( ( O ` f ) ` y ) ) = ( ( O ` f ) ` ( e .^ y ) ) ) } |
| 2 |
|
aks6d1c1p4.2 |
|- S = ( Poly1 ` K ) |
| 3 |
|
aks6d1c1p4.3 |
|- B = ( Base ` S ) |
| 4 |
|
aks6d1c1p4.4 |
|- X = ( var1 ` K ) |
| 5 |
|
aks6d1c1p4.5 |
|- W = ( mulGrp ` S ) |
| 6 |
|
aks6d1c1p4.6 |
|- V = ( mulGrp ` K ) |
| 7 |
|
aks6d1c1p4.7 |
|- .^ = ( .g ` V ) |
| 8 |
|
aks6d1c1p4.8 |
|- C = ( algSc ` S ) |
| 9 |
|
aks6d1c1p4.9 |
|- D = ( .g ` W ) |
| 10 |
|
aks6d1c1p4.10 |
|- P = ( chr ` K ) |
| 11 |
|
aks6d1c1p4.11 |
|- O = ( eval1 ` K ) |
| 12 |
|
aks6d1c1p4.12 |
|- .+ = ( +g ` S ) |
| 13 |
|
aks6d1c1p4.13 |
|- ( ph -> K e. Field ) |
| 14 |
|
aks6d1c1p4.14 |
|- ( ph -> P e. Prime ) |
| 15 |
|
aks6d1c1p4.15 |
|- ( ph -> R e. NN ) |
| 16 |
|
aks6d1c1p4.16 |
|- ( ph -> ( N gcd R ) = 1 ) |
| 17 |
|
aks6d1c1p4.17 |
|- ( ph -> P || N ) |
| 18 |
|
aks6d1c1p4.18 |
|- ( ph -> E .~ F ) |
| 19 |
|
aks6d1c1p4.19 |
|- ( ph -> E .~ G ) |
| 20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 21 |
13
|
fldcrngd |
|- ( ph -> K e. CRing ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> K e. CRing ) |
| 23 |
6 20
|
mgpbas |
|- ( Base ` K ) = ( Base ` V ) |
| 24 |
6
|
crngmgp |
|- ( K e. CRing -> V e. CMnd ) |
| 25 |
21 24
|
syl |
|- ( ph -> V e. CMnd ) |
| 26 |
25
|
cmnmndd |
|- ( ph -> V e. Mnd ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> V e. Mnd ) |
| 28 |
1 18
|
aks6d1c1p1rcl |
|- ( ph -> ( E e. NN /\ F e. B ) ) |
| 29 |
28
|
simpld |
|- ( ph -> E e. NN ) |
| 30 |
29
|
nnnn0d |
|- ( ph -> E e. NN0 ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> E e. NN0 ) |
| 32 |
15
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
| 33 |
|
eqid |
|- ( .g ` V ) = ( .g ` V ) |
| 34 |
25 32 33
|
isprimroot |
|- ( ph -> ( y e. ( V PrimRoots R ) <-> ( y e. ( Base ` V ) /\ ( R ( .g ` V ) y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l ( .g ` V ) y ) = ( 0g ` V ) -> R || l ) ) ) ) |
| 35 |
34
|
biimpd |
|- ( ph -> ( y e. ( V PrimRoots R ) -> ( y e. ( Base ` V ) /\ ( R ( .g ` V ) y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l ( .g ` V ) y ) = ( 0g ` V ) -> R || l ) ) ) ) |
| 36 |
35
|
imp |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( y e. ( Base ` V ) /\ ( R ( .g ` V ) y ) = ( 0g ` V ) /\ A. l e. NN0 ( ( l ( .g ` V ) y ) = ( 0g ` V ) -> R || l ) ) ) |
| 37 |
36
|
simp1d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` V ) ) |
| 38 |
37 23
|
eleqtrrdi |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( Base ` K ) ) |
| 39 |
23 7 27 31 38
|
mulgnn0cld |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ y ) e. ( Base ` K ) ) |
| 40 |
28
|
simprd |
|- ( ph -> F e. B ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> F e. B ) |
| 42 |
|
eqidd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` ( E .^ y ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) |
| 43 |
41 42
|
jca |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( F e. B /\ ( ( O ` F ) ` ( E .^ y ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) ) |
| 44 |
1 19
|
aks6d1c1p1rcl |
|- ( ph -> ( E e. NN /\ G e. B ) ) |
| 45 |
44
|
simprd |
|- ( ph -> G e. B ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> G e. B ) |
| 47 |
|
eqidd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` G ) ` ( E .^ y ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) |
| 48 |
46 47
|
jca |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( G e. B /\ ( ( O ` G ) ` ( E .^ y ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) ) |
| 49 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 50 |
5 49
|
mgpplusg |
|- ( .r ` S ) = ( +g ` W ) |
| 51 |
50
|
eqcomi |
|- ( +g ` W ) = ( .r ` S ) |
| 52 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 53 |
11 2 20 3 22 39 43 48 51 52
|
evl1muld |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( F ( +g ` W ) G ) e. B /\ ( ( O ` ( F ( +g ` W ) G ) ) ` ( E .^ y ) ) = ( ( ( O ` F ) ` ( E .^ y ) ) ( .r ` K ) ( ( O ` G ) ` ( E .^ y ) ) ) ) ) |
| 54 |
53
|
simprd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( F ( +g ` W ) G ) ) ` ( E .^ y ) ) = ( ( ( O ` F ) ` ( E .^ y ) ) ( .r ` K ) ( ( O ` G ) ` ( E .^ y ) ) ) ) |
| 55 |
25
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> V e. CMnd ) |
| 56 |
11 2 20 3 22 38 41
|
fveval1fvcl |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` y ) e. ( Base ` K ) ) |
| 57 |
6
|
eqcomi |
|- ( mulGrp ` K ) = V |
| 58 |
57
|
fveq2i |
|- ( Base ` ( mulGrp ` K ) ) = ( Base ` V ) |
| 59 |
23 58
|
eqtr4i |
|- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 60 |
59
|
a1i |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) ) |
| 61 |
60
|
eleq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` F ) ` y ) e. ( Base ` K ) <-> ( ( O ` F ) ` y ) e. ( Base ` ( mulGrp ` K ) ) ) ) |
| 62 |
56 61
|
mpbid |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` y ) e. ( Base ` ( mulGrp ` K ) ) ) |
| 63 |
11 2 20 3 22 38 46
|
fveval1fvcl |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` G ) ` y ) e. ( Base ` K ) ) |
| 64 |
60
|
eleq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` G ) ` y ) e. ( Base ` K ) <-> ( ( O ` G ) ` y ) e. ( Base ` ( mulGrp ` K ) ) ) ) |
| 65 |
63 64
|
mpbid |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` G ) ` y ) e. ( Base ` ( mulGrp ` K ) ) ) |
| 66 |
31 62 65
|
3jca |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E e. NN0 /\ ( ( O ` F ) ` y ) e. ( Base ` ( mulGrp ` K ) ) /\ ( ( O ` G ) ` y ) e. ( Base ` ( mulGrp ` K ) ) ) ) |
| 67 |
57
|
fveq2i |
|- ( +g ` ( mulGrp ` K ) ) = ( +g ` V ) |
| 68 |
58 7 67
|
mulgnn0di |
|- ( ( V e. CMnd /\ ( E e. NN0 /\ ( ( O ` F ) ` y ) e. ( Base ` ( mulGrp ` K ) ) /\ ( ( O ` G ) ` y ) e. ( Base ` ( mulGrp ` K ) ) ) ) -> ( E .^ ( ( ( O ` F ) ` y ) ( +g ` ( mulGrp ` K ) ) ( ( O ` G ) ` y ) ) ) = ( ( E .^ ( ( O ` F ) ` y ) ) ( +g ` ( mulGrp ` K ) ) ( E .^ ( ( O ` G ) ` y ) ) ) ) |
| 69 |
55 66 68
|
syl2anc |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( ( O ` F ) ` y ) ( +g ` ( mulGrp ` K ) ) ( ( O ` G ) ` y ) ) ) = ( ( E .^ ( ( O ` F ) ` y ) ) ( +g ` ( mulGrp ` K ) ) ( E .^ ( ( O ` G ) ` y ) ) ) ) |
| 70 |
6 52
|
mgpplusg |
|- ( .r ` K ) = ( +g ` V ) |
| 71 |
6
|
fveq2i |
|- ( +g ` V ) = ( +g ` ( mulGrp ` K ) ) |
| 72 |
70 71
|
eqtri |
|- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 73 |
72
|
a1i |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) ) |
| 74 |
73
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( +g ` ( mulGrp ` K ) ) = ( .r ` K ) ) |
| 75 |
|
fveq2 |
|- ( z = y -> ( ( O ` F ) ` z ) = ( ( O ` F ) ` y ) ) |
| 76 |
75
|
oveq2d |
|- ( z = y -> ( E .^ ( ( O ` F ) ` z ) ) = ( E .^ ( ( O ` F ) ` y ) ) ) |
| 77 |
|
oveq2 |
|- ( z = y -> ( E .^ z ) = ( E .^ y ) ) |
| 78 |
77
|
fveq2d |
|- ( z = y -> ( ( O ` F ) ` ( E .^ z ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) |
| 79 |
76 78
|
eqeq12d |
|- ( z = y -> ( ( E .^ ( ( O ` F ) ` z ) ) = ( ( O ` F ) ` ( E .^ z ) ) <-> ( E .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) ) |
| 80 |
1 40 29
|
aks6d1c1p1 |
|- ( ph -> ( E .~ F <-> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) ) |
| 81 |
18 80
|
mpbid |
|- ( ph -> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) |
| 82 |
|
fveq2 |
|- ( y = z -> ( ( O ` F ) ` y ) = ( ( O ` F ) ` z ) ) |
| 83 |
82
|
oveq2d |
|- ( y = z -> ( E .^ ( ( O ` F ) ` y ) ) = ( E .^ ( ( O ` F ) ` z ) ) ) |
| 84 |
|
oveq2 |
|- ( y = z -> ( E .^ y ) = ( E .^ z ) ) |
| 85 |
84
|
fveq2d |
|- ( y = z -> ( ( O ` F ) ` ( E .^ y ) ) = ( ( O ` F ) ` ( E .^ z ) ) ) |
| 86 |
83 85
|
eqeq12d |
|- ( y = z -> ( ( E .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( E .^ y ) ) <-> ( E .^ ( ( O ` F ) ` z ) ) = ( ( O ` F ) ` ( E .^ z ) ) ) ) |
| 87 |
86
|
cbvralvw |
|- ( A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( E .^ y ) ) <-> A. z e. ( V PrimRoots R ) ( E .^ ( ( O ` F ) ` z ) ) = ( ( O ` F ) ` ( E .^ z ) ) ) |
| 88 |
81 87
|
sylib |
|- ( ph -> A. z e. ( V PrimRoots R ) ( E .^ ( ( O ` F ) ` z ) ) = ( ( O ` F ) ` ( E .^ z ) ) ) |
| 89 |
88
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> A. z e. ( V PrimRoots R ) ( E .^ ( ( O ` F ) ` z ) ) = ( ( O ` F ) ` ( E .^ z ) ) ) |
| 90 |
|
simpr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> y e. ( V PrimRoots R ) ) |
| 91 |
79 89 90
|
rspcdva |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` F ) ` y ) ) = ( ( O ` F ) ` ( E .^ y ) ) ) |
| 92 |
|
fveq2 |
|- ( z = y -> ( ( O ` G ) ` z ) = ( ( O ` G ) ` y ) ) |
| 93 |
92
|
oveq2d |
|- ( z = y -> ( E .^ ( ( O ` G ) ` z ) ) = ( E .^ ( ( O ` G ) ` y ) ) ) |
| 94 |
77
|
fveq2d |
|- ( z = y -> ( ( O ` G ) ` ( E .^ z ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) |
| 95 |
93 94
|
eqeq12d |
|- ( z = y -> ( ( E .^ ( ( O ` G ) ` z ) ) = ( ( O ` G ) ` ( E .^ z ) ) <-> ( E .^ ( ( O ` G ) ` y ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) ) |
| 96 |
1 45 29
|
aks6d1c1p1 |
|- ( ph -> ( E .~ G <-> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` G ) ` y ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) ) |
| 97 |
19 96
|
mpbid |
|- ( ph -> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` G ) ` y ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) |
| 98 |
|
fveq2 |
|- ( y = z -> ( ( O ` G ) ` y ) = ( ( O ` G ) ` z ) ) |
| 99 |
98
|
oveq2d |
|- ( y = z -> ( E .^ ( ( O ` G ) ` y ) ) = ( E .^ ( ( O ` G ) ` z ) ) ) |
| 100 |
84
|
fveq2d |
|- ( y = z -> ( ( O ` G ) ` ( E .^ y ) ) = ( ( O ` G ) ` ( E .^ z ) ) ) |
| 101 |
99 100
|
eqeq12d |
|- ( y = z -> ( ( E .^ ( ( O ` G ) ` y ) ) = ( ( O ` G ) ` ( E .^ y ) ) <-> ( E .^ ( ( O ` G ) ` z ) ) = ( ( O ` G ) ` ( E .^ z ) ) ) ) |
| 102 |
101
|
cbvralvw |
|- ( A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` G ) ` y ) ) = ( ( O ` G ) ` ( E .^ y ) ) <-> A. z e. ( V PrimRoots R ) ( E .^ ( ( O ` G ) ` z ) ) = ( ( O ` G ) ` ( E .^ z ) ) ) |
| 103 |
97 102
|
sylib |
|- ( ph -> A. z e. ( V PrimRoots R ) ( E .^ ( ( O ` G ) ` z ) ) = ( ( O ` G ) ` ( E .^ z ) ) ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> A. z e. ( V PrimRoots R ) ( E .^ ( ( O ` G ) ` z ) ) = ( ( O ` G ) ` ( E .^ z ) ) ) |
| 105 |
95 104 90
|
rspcdva |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` G ) ` y ) ) = ( ( O ` G ) ` ( E .^ y ) ) ) |
| 106 |
74 91 105
|
oveq123d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( E .^ ( ( O ` F ) ` y ) ) ( +g ` ( mulGrp ` K ) ) ( E .^ ( ( O ` G ) ` y ) ) ) = ( ( ( O ` F ) ` ( E .^ y ) ) ( .r ` K ) ( ( O ` G ) ` ( E .^ y ) ) ) ) |
| 107 |
69 106
|
eqtr2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` F ) ` ( E .^ y ) ) ( .r ` K ) ( ( O ` G ) ` ( E .^ y ) ) ) = ( E .^ ( ( ( O ` F ) ` y ) ( +g ` ( mulGrp ` K ) ) ( ( O ` G ) ` y ) ) ) ) |
| 108 |
72
|
eqcomi |
|- ( +g ` ( mulGrp ` K ) ) = ( .r ` K ) |
| 109 |
108
|
a1i |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( +g ` ( mulGrp ` K ) ) = ( .r ` K ) ) |
| 110 |
109
|
oveqd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` F ) ` y ) ( +g ` ( mulGrp ` K ) ) ( ( O ` G ) ` y ) ) = ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) ) |
| 111 |
110
|
oveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( ( O ` F ) ` y ) ( +g ` ( mulGrp ` K ) ) ( ( O ` G ) ` y ) ) ) = ( E .^ ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) ) ) |
| 112 |
107 111
|
eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` F ) ` ( E .^ y ) ) ( .r ` K ) ( ( O ` G ) ` ( E .^ y ) ) ) = ( E .^ ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) ) ) |
| 113 |
|
eqidd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` F ) ` y ) = ( ( O ` F ) ` y ) ) |
| 114 |
41 113
|
jca |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( F e. B /\ ( ( O ` F ) ` y ) = ( ( O ` F ) ` y ) ) ) |
| 115 |
|
eqidd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` G ) ` y ) = ( ( O ` G ) ` y ) ) |
| 116 |
46 115
|
jca |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( G e. B /\ ( ( O ` G ) ` y ) = ( ( O ` G ) ` y ) ) ) |
| 117 |
11 2 20 3 22 38 114 116 51 52
|
evl1muld |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( F ( +g ` W ) G ) e. B /\ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) = ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) ) ) |
| 118 |
117
|
simprd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( F ( +g ` W ) G ) ) ` y ) = ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) ) |
| 119 |
118
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) = ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) |
| 120 |
119
|
oveq2d |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( ( O ` F ) ` y ) ( .r ` K ) ( ( O ` G ) ` y ) ) ) = ( E .^ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) ) |
| 121 |
112 120
|
eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( ( O ` F ) ` ( E .^ y ) ) ( .r ` K ) ( ( O ` G ) ` ( E .^ y ) ) ) = ( E .^ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) ) |
| 122 |
54 121
|
eqtrd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( ( O ` ( F ( +g ` W ) G ) ) ` ( E .^ y ) ) = ( E .^ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) ) |
| 123 |
122
|
eqcomd |
|- ( ( ph /\ y e. ( V PrimRoots R ) ) -> ( E .^ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) = ( ( O ` ( F ( +g ` W ) G ) ) ` ( E .^ y ) ) ) |
| 124 |
123
|
ralrimiva |
|- ( ph -> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) = ( ( O ` ( F ( +g ` W ) G ) ) ` ( E .^ y ) ) ) |
| 125 |
2
|
ply1crng |
|- ( K e. CRing -> S e. CRing ) |
| 126 |
21 125
|
syl |
|- ( ph -> S e. CRing ) |
| 127 |
126
|
crngringd |
|- ( ph -> S e. Ring ) |
| 128 |
3 51 127 40 45
|
ringcld |
|- ( ph -> ( F ( +g ` W ) G ) e. B ) |
| 129 |
1 128 29
|
aks6d1c1p1 |
|- ( ph -> ( E .~ ( F ( +g ` W ) G ) <-> A. y e. ( V PrimRoots R ) ( E .^ ( ( O ` ( F ( +g ` W ) G ) ) ` y ) ) = ( ( O ` ( F ( +g ` W ) G ) ) ` ( E .^ y ) ) ) ) |
| 130 |
124 129
|
mpbird |
|- ( ph -> E .~ ( F ( +g ` W ) G ) ) |