Step |
Hyp |
Ref |
Expression |
1 |
|
fermltlchr.z |
⊢ 𝑃 = ( chr ‘ 𝐹 ) |
2 |
|
fermltlchr.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
fermltlchr.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐹 ) ) |
4 |
|
fermltlchr.1 |
⊢ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) |
5 |
|
fermltlchr.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
6 |
|
fermltlchr.3 |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
7 |
|
fermltlchr.4 |
⊢ ( 𝜑 → 𝐹 ∈ CRing ) |
8 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
9 |
8
|
nnnn0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝑃 ∈ ℕ0 ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝐸 ∈ ℤ ) |
13 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) |
14 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
15 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
16 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
17 |
15 16
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
18 |
14 17
|
sseqtri |
⊢ ℤ ⊆ ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
19 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
20 |
|
eqid |
⊢ ( invg ‘ ( mulGrp ‘ ℂfld ) ) = ( invg ‘ ( mulGrp ‘ ℂfld ) ) |
21 |
|
cnring |
⊢ ℂfld ∈ Ring |
22 |
15
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
23 |
21 22
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
24 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
25 |
15 24
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
26 |
|
1z |
⊢ 1 ∈ ℤ |
27 |
25 26
|
eqeltrri |
⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) ∈ ℤ |
28 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
29 |
13 17 28
|
ress0g |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) ) |
30 |
23 27 14 29
|
mp3an |
⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
31 |
13 18 19 20 30
|
ressmulgnn0 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝐸 ∈ ℤ ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) = ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) ) |
32 |
11 12 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) = ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) ) |
33 |
12
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝐸 ∈ ℂ ) |
34 |
|
cnfldexp |
⊢ ( ( 𝐸 ∈ ℂ ∧ 𝑃 ∈ ℕ0 ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) = ( 𝐸 ↑ 𝑃 ) ) |
35 |
33 11 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) = ( 𝐸 ↑ 𝑃 ) ) |
36 |
32 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) = ( 𝐸 ↑ 𝑃 ) ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ) |
38 |
7
|
crngringd |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
39 |
|
eqid |
⊢ ( ℤRHom ‘ 𝐹 ) = ( ℤRHom ‘ 𝐹 ) |
40 |
39
|
zrhrhm |
⊢ ( 𝐹 ∈ Ring → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) ) |
41 |
38 40
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) ) |
42 |
|
zringmpg |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring ) |
43 |
|
eqid |
⊢ ( mulGrp ‘ 𝐹 ) = ( mulGrp ‘ 𝐹 ) |
44 |
42 43
|
rhmmhm |
⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ) |
45 |
41 44
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ) |
47 |
13 17
|
ressbas2 |
⊢ ( ℤ ⊆ ℂ → ℤ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) ) |
48 |
14 47
|
ax-mp |
⊢ ℤ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
49 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) = ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
50 |
48 49 3
|
mhmmulg |
⊢ ( ( ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ∧ 𝑃 ∈ ℕ0 ∧ 𝐸 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
51 |
46 11 12 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
52 |
6 10
|
zexpcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 𝑃 ) ∈ ℤ ) |
53 |
|
eqid |
⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) |
54 |
53
|
zringsubgval |
⊢ ( ( ( 𝐸 ↑ 𝑃 ) ∈ ℤ ∧ 𝐸 ∈ ℤ ) → ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) = ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) |
55 |
52 6 54
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) = ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) |
56 |
55
|
fveq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) ) |
57 |
52
|
zred |
⊢ ( 𝜑 → ( 𝐸 ↑ 𝑃 ) ∈ ℝ ) |
58 |
6
|
zred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
59 |
5 8
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
60 |
59
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
61 |
|
fermltl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℤ ) → ( ( 𝐸 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐸 mod 𝑃 ) ) |
62 |
5 6 61
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐸 mod 𝑃 ) ) |
63 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐸 mod 𝑃 ) = ( 𝐸 mod 𝑃 ) ) |
64 |
57 58 58 58 60 62 63
|
modsub12d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = ( ( 𝐸 − 𝐸 ) mod 𝑃 ) ) |
65 |
|
zcn |
⊢ ( 𝐸 ∈ ℤ → 𝐸 ∈ ℂ ) |
66 |
65
|
subidd |
⊢ ( 𝐸 ∈ ℤ → ( 𝐸 − 𝐸 ) = 0 ) |
67 |
6 66
|
syl |
⊢ ( 𝜑 → ( 𝐸 − 𝐸 ) = 0 ) |
68 |
67
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 − 𝐸 ) mod 𝑃 ) = ( 0 mod 𝑃 ) ) |
69 |
|
0mod |
⊢ ( 𝑃 ∈ ℝ+ → ( 0 mod 𝑃 ) = 0 ) |
70 |
60 69
|
syl |
⊢ ( 𝜑 → ( 0 mod 𝑃 ) = 0 ) |
71 |
64 68 70
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = 0 ) |
72 |
52 6
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ∈ ℤ ) |
73 |
|
dvdsval3 |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = 0 ) ) |
74 |
59 72 73
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = 0 ) ) |
75 |
71 74
|
mpbird |
⊢ ( 𝜑 → 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) |
76 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
77 |
1 39 76
|
chrdvds |
⊢ ( ( 𝐹 ∈ Ring ∧ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) ) |
78 |
38 72 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) ) |
79 |
75 78
|
mpbid |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) |
80 |
|
rhmghm |
⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring GrpHom 𝐹 ) ) |
81 |
41 80
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring GrpHom 𝐹 ) ) |
82 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
83 |
|
eqid |
⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) |
84 |
82 53 83
|
ghmsub |
⊢ ( ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring GrpHom 𝐹 ) ∧ ( 𝐸 ↑ 𝑃 ) ∈ ℤ ∧ 𝐸 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) = ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
85 |
81 52 6 84
|
syl3anc |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) = ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
86 |
56 79 85
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) |
87 |
7
|
crnggrpd |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
88 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
89 |
82 88
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
90 |
41 89
|
syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
91 |
90 52
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ∈ ( Base ‘ 𝐹 ) ) |
92 |
90 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) |
93 |
88 76 83
|
grpsubeq0 |
⊢ ( ( 𝐹 ∈ Grp ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( 0g ‘ 𝐹 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
94 |
87 91 92 93
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( 0g ‘ 𝐹 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
95 |
86 94
|
mpbid |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
97 |
37 51 96
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
98 |
|
oveq2 |
⊢ ( 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
100 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
101 |
97 99 100
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |
102 |
4 101
|
mpan2 |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |