Metamath Proof Explorer


Theorem primrootscoprf

Description: Coprime powers of primitive roots are primitive roots, as a function. (Contributed by metakunt, 26-Apr-2025)

Ref Expression
Hypotheses primrootscoprf.1 𝐹 = ( 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ↦ ( 𝐸 ( .g𝑅 ) 𝑚 ) )
primrootscoprf.2 ( 𝜑𝑅 ∈ CMnd )
primrootscoprf.3 ( 𝜑𝐾 ∈ ℕ )
primrootscoprf.4 ( 𝜑𝐸 ∈ ℕ )
primrootscoprf.5 ( 𝜑 → ( 𝐸 gcd 𝐾 ) = 1 )
Assertion primrootscoprf ( 𝜑𝐹 : ( 𝑅 PrimRoots 𝐾 ) ⟶ ( 𝑅 PrimRoots 𝐾 ) )

Proof

Step Hyp Ref Expression
1 primrootscoprf.1 𝐹 = ( 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ↦ ( 𝐸 ( .g𝑅 ) 𝑚 ) )
2 primrootscoprf.2 ( 𝜑𝑅 ∈ CMnd )
3 primrootscoprf.3 ( 𝜑𝐾 ∈ ℕ )
4 primrootscoprf.4 ( 𝜑𝐸 ∈ ℕ )
5 primrootscoprf.5 ( 𝜑 → ( 𝐸 gcd 𝐾 ) = 1 )
6 2 adantr ( ( 𝜑𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑅 ∈ CMnd )
7 3 adantr ( ( 𝜑𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐾 ∈ ℕ )
8 4 adantr ( ( 𝜑𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐸 ∈ ℕ )
9 5 adantr ( ( 𝜑𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐸 gcd 𝐾 ) = 1 )
10 simpr ( ( 𝜑𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) )
11 eqid { 𝑦 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 0g𝑅 ) } = { 𝑦 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 0g𝑅 ) }
12 6 7 8 9 10 11 primrootscoprmpow ( ( 𝜑𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐸 ( .g𝑅 ) 𝑚 ) ∈ ( 𝑅 PrimRoots 𝐾 ) )
13 12 1 fmptd ( 𝜑𝐹 : ( 𝑅 PrimRoots 𝐾 ) ⟶ ( 𝑅 PrimRoots 𝐾 ) )