Step |
Hyp |
Ref |
Expression |
1 |
|
primrootscoprf.1 |
⊢ 𝐹 = ( 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ↦ ( 𝐸 ( .g ‘ 𝑅 ) 𝑚 ) ) |
2 |
|
primrootscoprf.2 |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
3 |
|
primrootscoprf.3 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
4 |
|
primrootscoprf.4 |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
5 |
|
primrootscoprf.5 |
⊢ ( 𝜑 → ( 𝐸 gcd 𝐾 ) = 1 ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑅 ∈ CMnd ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐾 ∈ ℕ ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝐸 ∈ ℕ ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐸 gcd 𝐾 ) = 1 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
11 |
|
eqid |
⊢ { 𝑦 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) } = { 𝑦 ∈ ( Base ‘ 𝑅 ) ∣ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) } |
12 |
6 7 8 9 10 11
|
primrootscoprmpow |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑅 PrimRoots 𝐾 ) ) → ( 𝐸 ( .g ‘ 𝑅 ) 𝑚 ) ∈ ( 𝑅 PrimRoots 𝐾 ) ) |
13 |
12 1
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ( 𝑅 PrimRoots 𝐾 ) ⟶ ( 𝑅 PrimRoots 𝐾 ) ) |