Metamath Proof Explorer


Theorem isprimroot2

Description: Alternative way of creating primitive roots. (Contributed by metakunt, 14-Jul-2025)

Ref Expression
Hypotheses isprimroot2.1 φ R CMnd
isprimroot2.2 φ K
isprimroot2.3 φ M Base R
isprimroot2.4 φ od R M = K
Assertion isprimroot2 φ M R PrimRoots K

Proof

Step Hyp Ref Expression
1 isprimroot2.1 φ R CMnd
2 isprimroot2.2 φ K
3 isprimroot2.3 φ M Base R
4 isprimroot2.4 φ od R M = K
5 4 eqcomd φ K = od R M
6 5 oveq1d φ K R M = od R M R M
7 eqid Base R = Base R
8 eqid od R = od R
9 eqid R = R
10 eqid 0 R = 0 R
11 7 8 9 10 odid M Base R od R M R M = 0 R
12 3 11 syl φ od R M R M = 0 R
13 6 12 eqtrd φ K R M = 0 R
14 4 ad2antrr φ l 0 l R M = 0 R od R M = K
15 14 eqcomd φ l 0 l R M = 0 R K = od R M
16 1 cmnmndd φ R Mnd
17 16 adantr φ l 0 R Mnd
18 3 adantr φ l 0 M Base R
19 simpr φ l 0 l 0
20 7 8 9 10 oddvdsnn0 R Mnd M Base R l 0 od R M l l R M = 0 R
21 17 18 19 20 syl3anc φ l 0 od R M l l R M = 0 R
22 21 bicomd φ l 0 l R M = 0 R od R M l
23 22 biimpd φ l 0 l R M = 0 R od R M l
24 23 imp φ l 0 l R M = 0 R od R M l
25 15 24 eqbrtrd φ l 0 l R M = 0 R K l
26 25 ex φ l 0 l R M = 0 R K l
27 26 ralrimiva φ l 0 l R M = 0 R K l
28 3 13 27 3jca φ M Base R K R M = 0 R l 0 l R M = 0 R K l
29 2 nnnn0d φ K 0
30 1 29 9 isprimroot φ M R PrimRoots K M Base R K R M = 0 R l 0 l R M = 0 R K l
31 28 30 mpbird φ M R PrimRoots K