| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprimroot2.1 |
|- ( ph -> R e. CMnd ) |
| 2 |
|
isprimroot2.2 |
|- ( ph -> K e. NN ) |
| 3 |
|
isprimroot2.3 |
|- ( ph -> M e. ( Base ` R ) ) |
| 4 |
|
isprimroot2.4 |
|- ( ph -> ( ( od ` R ) ` M ) = K ) |
| 5 |
4
|
eqcomd |
|- ( ph -> K = ( ( od ` R ) ` M ) ) |
| 6 |
5
|
oveq1d |
|- ( ph -> ( K ( .g ` R ) M ) = ( ( ( od ` R ) ` M ) ( .g ` R ) M ) ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
| 9 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 11 |
7 8 9 10
|
odid |
|- ( M e. ( Base ` R ) -> ( ( ( od ` R ) ` M ) ( .g ` R ) M ) = ( 0g ` R ) ) |
| 12 |
3 11
|
syl |
|- ( ph -> ( ( ( od ` R ) ` M ) ( .g ` R ) M ) = ( 0g ` R ) ) |
| 13 |
6 12
|
eqtrd |
|- ( ph -> ( K ( .g ` R ) M ) = ( 0g ` R ) ) |
| 14 |
4
|
ad2antrr |
|- ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` R ) M ) = ( 0g ` R ) ) -> ( ( od ` R ) ` M ) = K ) |
| 15 |
14
|
eqcomd |
|- ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` R ) M ) = ( 0g ` R ) ) -> K = ( ( od ` R ) ` M ) ) |
| 16 |
1
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> R e. Mnd ) |
| 18 |
3
|
adantr |
|- ( ( ph /\ l e. NN0 ) -> M e. ( Base ` R ) ) |
| 19 |
|
simpr |
|- ( ( ph /\ l e. NN0 ) -> l e. NN0 ) |
| 20 |
7 8 9 10
|
oddvdsnn0 |
|- ( ( R e. Mnd /\ M e. ( Base ` R ) /\ l e. NN0 ) -> ( ( ( od ` R ) ` M ) || l <-> ( l ( .g ` R ) M ) = ( 0g ` R ) ) ) |
| 21 |
17 18 19 20
|
syl3anc |
|- ( ( ph /\ l e. NN0 ) -> ( ( ( od ` R ) ` M ) || l <-> ( l ( .g ` R ) M ) = ( 0g ` R ) ) ) |
| 22 |
21
|
bicomd |
|- ( ( ph /\ l e. NN0 ) -> ( ( l ( .g ` R ) M ) = ( 0g ` R ) <-> ( ( od ` R ) ` M ) || l ) ) |
| 23 |
22
|
biimpd |
|- ( ( ph /\ l e. NN0 ) -> ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> ( ( od ` R ) ` M ) || l ) ) |
| 24 |
23
|
imp |
|- ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` R ) M ) = ( 0g ` R ) ) -> ( ( od ` R ) ` M ) || l ) |
| 25 |
15 24
|
eqbrtrd |
|- ( ( ( ph /\ l e. NN0 ) /\ ( l ( .g ` R ) M ) = ( 0g ` R ) ) -> K || l ) |
| 26 |
25
|
ex |
|- ( ( ph /\ l e. NN0 ) -> ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) |
| 27 |
26
|
ralrimiva |
|- ( ph -> A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) |
| 28 |
3 13 27
|
3jca |
|- ( ph -> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) |
| 29 |
2
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 30 |
1 29 9
|
isprimroot |
|- ( ph -> ( M e. ( R PrimRoots K ) <-> ( M e. ( Base ` R ) /\ ( K ( .g ` R ) M ) = ( 0g ` R ) /\ A. l e. NN0 ( ( l ( .g ` R ) M ) = ( 0g ` R ) -> K || l ) ) ) ) |
| 31 |
28 30
|
mpbird |
|- ( ph -> M e. ( R PrimRoots K ) ) |