Metamath Proof Explorer


Theorem odid

Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion odid AXOA·˙A=0˙

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 oveq1 OA=0OA·˙A=0·˙A
6 1 4 3 mulg0 AX0·˙A=0˙
7 5 6 sylan9eqr AXOA=0OA·˙A=0˙
8 7 adantrr AXOA=0y|y·˙A=0˙=OA·˙A=0˙
9 oveq1 y=OAy·˙A=OA·˙A
10 9 eqeq1d y=OAy·˙A=0˙OA·˙A=0˙
11 10 elrab OAy|y·˙A=0˙OAOA·˙A=0˙
12 11 simprbi OAy|y·˙A=0˙OA·˙A=0˙
13 12 adantl AXOAy|y·˙A=0˙OA·˙A=0˙
14 eqid y|y·˙A=0˙=y|y·˙A=0˙
15 1 3 4 2 14 odlem1 AXOA=0y|y·˙A=0˙=OAy|y·˙A=0˙
16 8 13 15 mpjaodan AXOA·˙A=0˙