Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | odid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | oveq1 | |
|
6 | 1 4 3 | mulg0 | |
7 | 5 6 | sylan9eqr | |
8 | 7 | adantrr | |
9 | oveq1 | |
|
10 | 9 | eqeq1d | |
11 | 10 | elrab | |
12 | 11 | simprbi | |
13 | 12 | adantl | |
14 | eqid | |
|
15 | 1 3 4 2 14 | odlem1 | |
16 | 8 13 15 | mpjaodan | |