Metamath Proof Explorer


Theorem odid

Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses odcl.1 𝑋 = ( Base ‘ 𝐺 )
odcl.2 𝑂 = ( od ‘ 𝐺 )
odid.3 · = ( .g𝐺 )
odid.4 0 = ( 0g𝐺 )
Assertion odid ( 𝐴𝑋 → ( ( 𝑂𝐴 ) · 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 odcl.1 𝑋 = ( Base ‘ 𝐺 )
2 odcl.2 𝑂 = ( od ‘ 𝐺 )
3 odid.3 · = ( .g𝐺 )
4 odid.4 0 = ( 0g𝐺 )
5 oveq1 ( ( 𝑂𝐴 ) = 0 → ( ( 𝑂𝐴 ) · 𝐴 ) = ( 0 · 𝐴 ) )
6 1 4 3 mulg0 ( 𝐴𝑋 → ( 0 · 𝐴 ) = 0 )
7 5 6 sylan9eqr ( ( 𝐴𝑋 ∧ ( 𝑂𝐴 ) = 0 ) → ( ( 𝑂𝐴 ) · 𝐴 ) = 0 )
8 7 adantrr ( ( 𝐴𝑋 ∧ ( ( 𝑂𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ ) ) → ( ( 𝑂𝐴 ) · 𝐴 ) = 0 )
9 oveq1 ( 𝑦 = ( 𝑂𝐴 ) → ( 𝑦 · 𝐴 ) = ( ( 𝑂𝐴 ) · 𝐴 ) )
10 9 eqeq1d ( 𝑦 = ( 𝑂𝐴 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( ( 𝑂𝐴 ) · 𝐴 ) = 0 ) )
11 10 elrab ( ( 𝑂𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ↔ ( ( 𝑂𝐴 ) ∈ ℕ ∧ ( ( 𝑂𝐴 ) · 𝐴 ) = 0 ) )
12 11 simprbi ( ( 𝑂𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → ( ( 𝑂𝐴 ) · 𝐴 ) = 0 )
13 12 adantl ( ( 𝐴𝑋 ∧ ( 𝑂𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( ( 𝑂𝐴 ) · 𝐴 ) = 0 )
14 eqid { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 }
15 1 3 4 2 14 odlem1 ( 𝐴𝑋 → ( ( ( 𝑂𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ ) ∨ ( 𝑂𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) )
16 8 13 15 mpjaodan ( 𝐴𝑋 → ( ( 𝑂𝐴 ) · 𝐴 ) = 0 )