Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c2.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c2.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c2.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c2.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c2.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c2.6 |
|- ( ph -> N e. NN ) |
7 |
|
aks6d1c2.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c2.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c2.9 |
|- ( ph -> F : ( 0 ... A ) --> NN0 ) |
10 |
|
aks6d1c2.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
11 |
|
aks6d1c2.11 |
|- ( ph -> A e. NN0 ) |
12 |
|
aks6d1c2.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
13 |
|
aks6d1c2.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
14 |
|
aks6d1c2.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
15 |
|
aks6d1c2.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
16 |
|
aks6d1c2.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
17 |
|
aks6d1c2.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
18 |
|
aks6d1c2.18 |
|- B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
19 |
|
aks6d1c2.19 |
|- C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
20 |
|
aks6d1c2.20 |
|- ( ph -> I e. C ) |
21 |
|
aks6d1c2.21 |
|- ( ph -> J e. C ) |
22 |
|
aks6d1c2.22 |
|- ( ph -> I < J ) |
23 |
|
aks6d1c2.23 |
|- .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
24 |
|
aks6d1c2.24 |
|- X = ( var1 ` K ) |
25 |
|
aks6d1c2.25 |
|- S = ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) |
26 |
|
aks6d1c2.26 |
|- ( ph -> U e. NN ) |
27 |
|
aks6d1c2.27 |
|- ( ph -> J = ( I + ( U x. R ) ) ) |
28 |
|
aks6d1c2p3.1 |
|- ( ph -> s e. ( NN0 ^m ( 0 ... A ) ) ) |
29 |
|
aks6d1c2p3.2 |
|- ( ph -> r e. ( 0 ... B ) ) |
30 |
|
aks6d1c2p3.3 |
|- ( ph -> o e. ( 0 ... B ) ) |
31 |
|
aks6d1c2p3.4 |
|- ( ph -> J = ( r E o ) ) |
32 |
|
aks6d1c2p3.5 |
|- ( ph -> p e. ( 0 ... B ) ) |
33 |
|
aks6d1c2p3.6 |
|- ( ph -> q e. ( 0 ... B ) ) |
34 |
|
aks6d1c2p3.7 |
|- ( ph -> I = ( p E q ) ) |
35 |
|
aks6d1c2p3.8 |
|- ( ph -> I e. NN0 ) |
36 |
12
|
a1i |
|- ( ph -> E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) ) |
37 |
|
simprl |
|- ( ( ph /\ ( k = r /\ l = o ) ) -> k = r ) |
38 |
37
|
oveq2d |
|- ( ( ph /\ ( k = r /\ l = o ) ) -> ( P ^ k ) = ( P ^ r ) ) |
39 |
|
simprr |
|- ( ( ph /\ ( k = r /\ l = o ) ) -> l = o ) |
40 |
39
|
oveq2d |
|- ( ( ph /\ ( k = r /\ l = o ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ o ) ) |
41 |
38 40
|
oveq12d |
|- ( ( ph /\ ( k = r /\ l = o ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) |
42 |
|
elfznn0 |
|- ( r e. ( 0 ... B ) -> r e. NN0 ) |
43 |
29 42
|
syl |
|- ( ph -> r e. NN0 ) |
44 |
|
elfznn0 |
|- ( o e. ( 0 ... B ) -> o e. NN0 ) |
45 |
30 44
|
syl |
|- ( ph -> o e. NN0 ) |
46 |
|
ovexd |
|- ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. _V ) |
47 |
36 41 43 45 46
|
ovmpod |
|- ( ph -> ( r E o ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) |
48 |
31 47
|
eqtrd |
|- ( ph -> J = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) |
49 |
48
|
oveq1d |
|- ( ph -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
50 |
|
simprl |
|- ( ( ph /\ ( k = p /\ l = q ) ) -> k = p ) |
51 |
50
|
oveq2d |
|- ( ( ph /\ ( k = p /\ l = q ) ) -> ( P ^ k ) = ( P ^ p ) ) |
52 |
|
simprr |
|- ( ( ph /\ ( k = p /\ l = q ) ) -> l = q ) |
53 |
52
|
oveq2d |
|- ( ( ph /\ ( k = p /\ l = q ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ q ) ) |
54 |
51 53
|
oveq12d |
|- ( ( ph /\ ( k = p /\ l = q ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) |
55 |
|
elfznn0 |
|- ( p e. ( 0 ... B ) -> p e. NN0 ) |
56 |
32 55
|
syl |
|- ( ph -> p e. NN0 ) |
57 |
|
elfznn0 |
|- ( q e. ( 0 ... B ) -> q e. NN0 ) |
58 |
33 57
|
syl |
|- ( ph -> q e. NN0 ) |
59 |
|
ovexd |
|- ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. _V ) |
60 |
36 54 56 58 59
|
ovmpod |
|- ( ph -> ( p E q ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) |
61 |
34 60
|
eqtrd |
|- ( ph -> I = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) |
62 |
61
|
oveq1d |
|- ( ph -> ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
63 |
|
fveq2 |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) |
64 |
63
|
oveq2d |
|- ( y = M -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
65 |
|
oveq2 |
|- ( y = M -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) = ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) |
66 |
65
|
fveq2d |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
67 |
64 66
|
eqeq12d |
|- ( y = M -> ( ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
68 |
|
nn0ex |
|- NN0 e. _V |
69 |
68
|
a1i |
|- ( ph -> NN0 e. _V ) |
70 |
|
ovexd |
|- ( ph -> ( 0 ... A ) e. _V ) |
71 |
|
elmapg |
|- ( ( NN0 e. _V /\ ( 0 ... A ) e. _V ) -> ( s e. ( NN0 ^m ( 0 ... A ) ) <-> s : ( 0 ... A ) --> NN0 ) ) |
72 |
69 70 71
|
syl2anc |
|- ( ph -> ( s e. ( NN0 ^m ( 0 ... A ) ) <-> s : ( 0 ... A ) --> NN0 ) ) |
73 |
28 72
|
mpbid |
|- ( ph -> s : ( 0 ... A ) --> NN0 ) |
74 |
|
eqid |
|- ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) |
75 |
1 2 3 4 5 6 7 8 73 10 11 56 58 74 14 15
|
aks6d1c1rh |
|- ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) .~ ( G ` s ) ) |
76 |
1 75
|
aks6d1c1p1rcl |
|- ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. NN /\ ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) ) |
77 |
76
|
simprd |
|- ( ph -> ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) |
78 |
76
|
simpld |
|- ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. NN ) |
79 |
1 77 78
|
aks6d1c1p1 |
|- ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) .~ ( G ` s ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) |
80 |
75 79
|
mpbid |
|- ( ph -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) |
81 |
67 80 16
|
rspcdva |
|- ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
82 |
61
|
eqcomd |
|- ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) = I ) |
83 |
82
|
oveq1d |
|- ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) |
84 |
48
|
eqcomd |
|- ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) = J ) |
85 |
84
|
oveq1d |
|- ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( J ( .g ` ( mulGrp ` K ) ) M ) ) |
86 |
27
|
oveq1d |
|- ( ph -> ( J ( .g ` ( mulGrp ` K ) ) M ) = ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) ) |
87 |
3
|
fldcrngd |
|- ( ph -> K e. CRing ) |
88 |
|
crngring |
|- ( K e. CRing -> K e. Ring ) |
89 |
87 88
|
syl |
|- ( ph -> K e. Ring ) |
90 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
91 |
90
|
ringmgp |
|- ( K e. Ring -> ( mulGrp ` K ) e. Mnd ) |
92 |
89 91
|
syl |
|- ( ph -> ( mulGrp ` K ) e. Mnd ) |
93 |
26
|
nnnn0d |
|- ( ph -> U e. NN0 ) |
94 |
5
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
95 |
93 94
|
nn0mulcld |
|- ( ph -> ( U x. R ) e. NN0 ) |
96 |
90
|
crngmgp |
|- ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) |
97 |
87 96
|
syl |
|- ( ph -> ( mulGrp ` K ) e. CMnd ) |
98 |
|
eqid |
|- ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) |
99 |
97 94 98
|
isprimroot |
|- ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) <-> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) ) |
100 |
99
|
biimpd |
|- ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) ) |
101 |
16 100
|
mpd |
|- ( ph -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) |
102 |
101
|
simp1d |
|- ( ph -> M e. ( Base ` ( mulGrp ` K ) ) ) |
103 |
35 95 102
|
3jca |
|- ( ph -> ( I e. NN0 /\ ( U x. R ) e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) |
104 |
|
eqid |
|- ( Base ` ( mulGrp ` K ) ) = ( Base ` ( mulGrp ` K ) ) |
105 |
|
eqid |
|- ( +g ` ( mulGrp ` K ) ) = ( +g ` ( mulGrp ` K ) ) |
106 |
104 98 105
|
mulgnn0dir |
|- ( ( ( mulGrp ` K ) e. Mnd /\ ( I e. NN0 /\ ( U x. R ) e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) -> ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
107 |
92 103 106
|
syl2anc |
|- ( ph -> ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
108 |
93 94 102
|
3jca |
|- ( ph -> ( U e. NN0 /\ R e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) |
109 |
104 98
|
mulgnn0ass |
|- ( ( ( mulGrp ` K ) e. Mnd /\ ( U e. NN0 /\ R e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) -> ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) = ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) ) |
110 |
92 108 109
|
syl2anc |
|- ( ph -> ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) = ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) ) |
111 |
101
|
simp2d |
|- ( ph -> ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) ) |
112 |
111
|
oveq2d |
|- ( ph -> ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) = ( U ( .g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) ) |
113 |
|
eqid |
|- ( 0g ` ( mulGrp ` K ) ) = ( 0g ` ( mulGrp ` K ) ) |
114 |
104 98 113
|
mulgnn0z |
|- ( ( ( mulGrp ` K ) e. Mnd /\ U e. NN0 ) -> ( U ( .g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( 0g ` ( mulGrp ` K ) ) ) |
115 |
92 93 114
|
syl2anc |
|- ( ph -> ( U ( .g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( 0g ` ( mulGrp ` K ) ) ) |
116 |
112 115
|
eqtrd |
|- ( ph -> ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` ( mulGrp ` K ) ) ) |
117 |
110 116
|
eqtrd |
|- ( ph -> ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) ) |
118 |
117
|
oveq2d |
|- ( ph -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) ) |
119 |
104 98 92 35 102
|
mulgnn0cld |
|- ( ph -> ( I ( .g ` ( mulGrp ` K ) ) M ) e. ( Base ` ( mulGrp ` K ) ) ) |
120 |
104 105 113
|
mndrid |
|- ( ( ( mulGrp ` K ) e. Mnd /\ ( I ( .g ` ( mulGrp ` K ) ) M ) e. ( Base ` ( mulGrp ` K ) ) ) -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) |
121 |
92 119 120
|
syl2anc |
|- ( ph -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) |
122 |
118 121
|
eqtrd |
|- ( ph -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) |
123 |
107 122
|
eqtrd |
|- ( ph -> ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) |
124 |
86 123
|
eqtrd |
|- ( ph -> ( J ( .g ` ( mulGrp ` K ) ) M ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) |
125 |
85 124
|
eqtr2d |
|- ( ph -> ( I ( .g ` ( mulGrp ` K ) ) M ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) |
126 |
83 125
|
eqtrd |
|- ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) |
127 |
126
|
fveq2d |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
128 |
63
|
oveq2d |
|- ( y = M -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
129 |
|
oveq2 |
|- ( y = M -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) |
130 |
129
|
fveq2d |
|- ( y = M -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
131 |
128 130
|
eqeq12d |
|- ( y = M -> ( ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) |
132 |
|
eqid |
|- ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) |
133 |
1 2 3 4 5 6 7 8 73 10 11 43 45 132 14 15
|
aks6d1c1rh |
|- ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) .~ ( G ` s ) ) |
134 |
1 133
|
aks6d1c1p1rcl |
|- ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. NN /\ ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) ) |
135 |
134
|
simpld |
|- ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. NN ) |
136 |
1 77 135
|
aks6d1c1p1 |
|- ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) .~ ( G ` s ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) |
137 |
133 136
|
mpbid |
|- ( ph -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) |
138 |
131 137 16
|
rspcdva |
|- ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) |
139 |
138
|
eqcomd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
140 |
127 139
|
eqtrd |
|- ( ph -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
141 |
81 140
|
eqtrd |
|- ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
142 |
62 141
|
eqtr2d |
|- ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |
143 |
49 142
|
eqtrd |
|- ( ph -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |