| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c2.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c2.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c2.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c2.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c2.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c2.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c2.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c2.9 |  |-  ( ph -> F : ( 0 ... A ) --> NN0 ) | 
						
							| 10 |  | aks6d1c2.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 11 |  | aks6d1c2.11 |  |-  ( ph -> A e. NN0 ) | 
						
							| 12 |  | aks6d1c2.12 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 13 |  | aks6d1c2.13 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 14 |  | aks6d1c2.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 15 |  | aks6d1c2.15 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 16 |  | aks6d1c2.16 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 17 |  | aks6d1c2.17 |  |-  H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) | 
						
							| 18 |  | aks6d1c2.18 |  |-  B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 19 |  | aks6d1c2.19 |  |-  C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) | 
						
							| 20 |  | aks6d1c2.20 |  |-  ( ph -> I e. C ) | 
						
							| 21 |  | aks6d1c2.21 |  |-  ( ph -> J e. C ) | 
						
							| 22 |  | aks6d1c2.22 |  |-  ( ph -> I < J ) | 
						
							| 23 |  | aks6d1c2.23 |  |-  .^ = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 24 |  | aks6d1c2.24 |  |-  X = ( var1 ` K ) | 
						
							| 25 |  | aks6d1c2.25 |  |-  S = ( ( J .^ X ) ( -g ` ( Poly1 ` K ) ) ( I .^ X ) ) | 
						
							| 26 |  | aks6d1c2.26 |  |-  ( ph -> U e. NN ) | 
						
							| 27 |  | aks6d1c2.27 |  |-  ( ph -> J = ( I + ( U x. R ) ) ) | 
						
							| 28 |  | aks6d1c2p3.1 |  |-  ( ph -> s e. ( NN0 ^m ( 0 ... A ) ) ) | 
						
							| 29 |  | aks6d1c2p3.2 |  |-  ( ph -> r e. ( 0 ... B ) ) | 
						
							| 30 |  | aks6d1c2p3.3 |  |-  ( ph -> o e. ( 0 ... B ) ) | 
						
							| 31 |  | aks6d1c2p3.4 |  |-  ( ph -> J = ( r E o ) ) | 
						
							| 32 |  | aks6d1c2p3.5 |  |-  ( ph -> p e. ( 0 ... B ) ) | 
						
							| 33 |  | aks6d1c2p3.6 |  |-  ( ph -> q e. ( 0 ... B ) ) | 
						
							| 34 |  | aks6d1c2p3.7 |  |-  ( ph -> I = ( p E q ) ) | 
						
							| 35 |  | aks6d1c2p3.8 |  |-  ( ph -> I e. NN0 ) | 
						
							| 36 | 12 | a1i |  |-  ( ph -> E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) ) | 
						
							| 37 |  | simprl |  |-  ( ( ph /\ ( k = r /\ l = o ) ) -> k = r ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ph /\ ( k = r /\ l = o ) ) -> ( P ^ k ) = ( P ^ r ) ) | 
						
							| 39 |  | simprr |  |-  ( ( ph /\ ( k = r /\ l = o ) ) -> l = o ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ph /\ ( k = r /\ l = o ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ o ) ) | 
						
							| 41 | 38 40 | oveq12d |  |-  ( ( ph /\ ( k = r /\ l = o ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) | 
						
							| 42 |  | elfznn0 |  |-  ( r e. ( 0 ... B ) -> r e. NN0 ) | 
						
							| 43 | 29 42 | syl |  |-  ( ph -> r e. NN0 ) | 
						
							| 44 |  | elfznn0 |  |-  ( o e. ( 0 ... B ) -> o e. NN0 ) | 
						
							| 45 | 30 44 | syl |  |-  ( ph -> o e. NN0 ) | 
						
							| 46 |  | ovexd |  |-  ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. _V ) | 
						
							| 47 | 36 41 43 45 46 | ovmpod |  |-  ( ph -> ( r E o ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) | 
						
							| 48 | 31 47 | eqtrd |  |-  ( ph -> J = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ph -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 50 |  | simprl |  |-  ( ( ph /\ ( k = p /\ l = q ) ) -> k = p ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( ph /\ ( k = p /\ l = q ) ) -> ( P ^ k ) = ( P ^ p ) ) | 
						
							| 52 |  | simprr |  |-  ( ( ph /\ ( k = p /\ l = q ) ) -> l = q ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ph /\ ( k = p /\ l = q ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ q ) ) | 
						
							| 54 | 51 53 | oveq12d |  |-  ( ( ph /\ ( k = p /\ l = q ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) | 
						
							| 55 |  | elfznn0 |  |-  ( p e. ( 0 ... B ) -> p e. NN0 ) | 
						
							| 56 | 32 55 | syl |  |-  ( ph -> p e. NN0 ) | 
						
							| 57 |  | elfznn0 |  |-  ( q e. ( 0 ... B ) -> q e. NN0 ) | 
						
							| 58 | 33 57 | syl |  |-  ( ph -> q e. NN0 ) | 
						
							| 59 |  | ovexd |  |-  ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. _V ) | 
						
							| 60 | 36 54 56 58 59 | ovmpod |  |-  ( ph -> ( p E q ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) | 
						
							| 61 | 34 60 | eqtrd |  |-  ( ph -> I = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( ph -> ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 63 |  | fveq2 |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( y = M -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 65 |  | oveq2 |  |-  ( y = M -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) = ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 66 | 65 | fveq2d |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 67 | 64 66 | eqeq12d |  |-  ( y = M -> ( ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 68 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 69 | 68 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 70 |  | ovexd |  |-  ( ph -> ( 0 ... A ) e. _V ) | 
						
							| 71 |  | elmapg |  |-  ( ( NN0 e. _V /\ ( 0 ... A ) e. _V ) -> ( s e. ( NN0 ^m ( 0 ... A ) ) <-> s : ( 0 ... A ) --> NN0 ) ) | 
						
							| 72 | 69 70 71 | syl2anc |  |-  ( ph -> ( s e. ( NN0 ^m ( 0 ... A ) ) <-> s : ( 0 ... A ) --> NN0 ) ) | 
						
							| 73 | 28 72 | mpbid |  |-  ( ph -> s : ( 0 ... A ) --> NN0 ) | 
						
							| 74 |  | eqid |  |-  ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) = ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 8 73 10 11 56 58 74 14 15 | aks6d1c1rh |  |-  ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) .~ ( G ` s ) ) | 
						
							| 76 | 1 75 | aks6d1c1p1rcl |  |-  ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. NN /\ ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) ) | 
						
							| 77 | 76 | simprd |  |-  ( ph -> ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) | 
						
							| 78 | 76 | simpld |  |-  ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) e. NN ) | 
						
							| 79 | 1 77 78 | aks6d1c1p1 |  |-  ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) .~ ( G ` s ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) | 
						
							| 80 | 75 79 | mpbid |  |-  ( ph -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) | 
						
							| 81 | 67 80 16 | rspcdva |  |-  ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 82 | 61 | eqcomd |  |-  ( ph -> ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) = I ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 84 | 48 | eqcomd |  |-  ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) = J ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( J ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 86 | 27 | oveq1d |  |-  ( ph -> ( J ( .g ` ( mulGrp ` K ) ) M ) = ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 87 | 3 | fldcrngd |  |-  ( ph -> K e. CRing ) | 
						
							| 88 |  | crngring |  |-  ( K e. CRing -> K e. Ring ) | 
						
							| 89 | 87 88 | syl |  |-  ( ph -> K e. Ring ) | 
						
							| 90 |  | eqid |  |-  ( mulGrp ` K ) = ( mulGrp ` K ) | 
						
							| 91 | 90 | ringmgp |  |-  ( K e. Ring -> ( mulGrp ` K ) e. Mnd ) | 
						
							| 92 | 89 91 | syl |  |-  ( ph -> ( mulGrp ` K ) e. Mnd ) | 
						
							| 93 | 26 | nnnn0d |  |-  ( ph -> U e. NN0 ) | 
						
							| 94 | 5 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 95 | 93 94 | nn0mulcld |  |-  ( ph -> ( U x. R ) e. NN0 ) | 
						
							| 96 | 90 | crngmgp |  |-  ( K e. CRing -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 97 | 87 96 | syl |  |-  ( ph -> ( mulGrp ` K ) e. CMnd ) | 
						
							| 98 |  | eqid |  |-  ( .g ` ( mulGrp ` K ) ) = ( .g ` ( mulGrp ` K ) ) | 
						
							| 99 | 97 94 98 | isprimroot |  |-  ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) <-> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) ) | 
						
							| 100 | 99 | biimpd |  |-  ( ph -> ( M e. ( ( mulGrp ` K ) PrimRoots R ) -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) ) | 
						
							| 101 | 16 100 | mpd |  |-  ( ph -> ( M e. ( Base ` ( mulGrp ` K ) ) /\ ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) /\ A. v e. NN0 ( ( v ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) -> R || v ) ) ) | 
						
							| 102 | 101 | simp1d |  |-  ( ph -> M e. ( Base ` ( mulGrp ` K ) ) ) | 
						
							| 103 | 35 95 102 | 3jca |  |-  ( ph -> ( I e. NN0 /\ ( U x. R ) e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) | 
						
							| 104 |  | eqid |  |-  ( Base ` ( mulGrp ` K ) ) = ( Base ` ( mulGrp ` K ) ) | 
						
							| 105 |  | eqid |  |-  ( +g ` ( mulGrp ` K ) ) = ( +g ` ( mulGrp ` K ) ) | 
						
							| 106 | 104 98 105 | mulgnn0dir |  |-  ( ( ( mulGrp ` K ) e. Mnd /\ ( I e. NN0 /\ ( U x. R ) e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) -> ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 107 | 92 103 106 | syl2anc |  |-  ( ph -> ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 108 | 93 94 102 | 3jca |  |-  ( ph -> ( U e. NN0 /\ R e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) | 
						
							| 109 | 104 98 | mulgnn0ass |  |-  ( ( ( mulGrp ` K ) e. Mnd /\ ( U e. NN0 /\ R e. NN0 /\ M e. ( Base ` ( mulGrp ` K ) ) ) ) -> ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) = ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 110 | 92 108 109 | syl2anc |  |-  ( ph -> ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) = ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 111 | 101 | simp2d |  |-  ( ph -> ( R ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) ) | 
						
							| 112 | 111 | oveq2d |  |-  ( ph -> ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) = ( U ( .g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) ) | 
						
							| 113 |  | eqid |  |-  ( 0g ` ( mulGrp ` K ) ) = ( 0g ` ( mulGrp ` K ) ) | 
						
							| 114 | 104 98 113 | mulgnn0z |  |-  ( ( ( mulGrp ` K ) e. Mnd /\ U e. NN0 ) -> ( U ( .g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( 0g ` ( mulGrp ` K ) ) ) | 
						
							| 115 | 92 93 114 | syl2anc |  |-  ( ph -> ( U ( .g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( 0g ` ( mulGrp ` K ) ) ) | 
						
							| 116 | 112 115 | eqtrd |  |-  ( ph -> ( U ( .g ` ( mulGrp ` K ) ) ( R ( .g ` ( mulGrp ` K ) ) M ) ) = ( 0g ` ( mulGrp ` K ) ) ) | 
						
							| 117 | 110 116 | eqtrd |  |-  ( ph -> ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) = ( 0g ` ( mulGrp ` K ) ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( ph -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) ) | 
						
							| 119 | 104 98 92 35 102 | mulgnn0cld |  |-  ( ph -> ( I ( .g ` ( mulGrp ` K ) ) M ) e. ( Base ` ( mulGrp ` K ) ) ) | 
						
							| 120 | 104 105 113 | mndrid |  |-  ( ( ( mulGrp ` K ) e. Mnd /\ ( I ( .g ` ( mulGrp ` K ) ) M ) e. ( Base ` ( mulGrp ` K ) ) ) -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 121 | 92 119 120 | syl2anc |  |-  ( ph -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( 0g ` ( mulGrp ` K ) ) ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 122 | 118 121 | eqtrd |  |-  ( ph -> ( ( I ( .g ` ( mulGrp ` K ) ) M ) ( +g ` ( mulGrp ` K ) ) ( ( U x. R ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 123 | 107 122 | eqtrd |  |-  ( ph -> ( ( I + ( U x. R ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 124 | 86 123 | eqtrd |  |-  ( ph -> ( J ( .g ` ( mulGrp ` K ) ) M ) = ( I ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 125 | 85 124 | eqtr2d |  |-  ( ph -> ( I ( .g ` ( mulGrp ` K ) ) M ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 126 | 83 125 | eqtrd |  |-  ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 127 | 126 | fveq2d |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 128 | 63 | oveq2d |  |-  ( y = M -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 129 |  | oveq2 |  |-  ( y = M -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) | 
						
							| 130 | 129 | fveq2d |  |-  ( y = M -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 131 | 128 130 | eqeq12d |  |-  ( y = M -> ( ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) <-> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) ) | 
						
							| 132 |  | eqid |  |-  ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) = ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) | 
						
							| 133 | 1 2 3 4 5 6 7 8 73 10 11 43 45 132 14 15 | aks6d1c1rh |  |-  ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) .~ ( G ` s ) ) | 
						
							| 134 | 1 133 | aks6d1c1p1rcl |  |-  ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. NN /\ ( G ` s ) e. ( Base ` ( Poly1 ` K ) ) ) ) | 
						
							| 135 | 134 | simpld |  |-  ( ph -> ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) e. NN ) | 
						
							| 136 | 1 77 135 | aks6d1c1p1 |  |-  ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) .~ ( G ` s ) <-> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) ) | 
						
							| 137 | 133 136 | mpbid |  |-  ( ph -> A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` y ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) y ) ) ) | 
						
							| 138 | 131 137 16 | rspcdva |  |-  ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) ) | 
						
							| 139 | 138 | eqcomd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 140 | 127 139 | eqtrd |  |-  ( ph -> ( ( ( eval1 ` K ) ` ( G ` s ) ) ` ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 141 | 81 140 | eqtrd |  |-  ( ph -> ( ( ( P ^ p ) x. ( ( N / P ) ^ q ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 142 | 62 141 | eqtr2d |  |-  ( ph -> ( ( ( P ^ r ) x. ( ( N / P ) ^ o ) ) ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) | 
						
							| 143 | 49 142 | eqtrd |  |-  ( ph -> ( J ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) = ( I ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` ( G ` s ) ) ` M ) ) ) |