Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c2a.1 |
|- .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } |
2 |
|
aks6d1c2a.2 |
|- P = ( chr ` K ) |
3 |
|
aks6d1c2a.3 |
|- ( ph -> K e. Field ) |
4 |
|
aks6d1c2a.4 |
|- ( ph -> P e. Prime ) |
5 |
|
aks6d1c2a.5 |
|- ( ph -> R e. NN ) |
6 |
|
aks6d1c2a.6 |
|- ( ph -> N e. NN ) |
7 |
|
aks6d1c2a.7 |
|- ( ph -> P || N ) |
8 |
|
aks6d1c2a.8 |
|- ( ph -> ( N gcd R ) = 1 ) |
9 |
|
aks6d1c2a.10 |
|- G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) |
10 |
|
aks6d1c2a.11 |
|- ( ph -> A e. NN0 ) |
11 |
|
aks6d1c2a.12 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
12 |
|
aks6d1c2a.13 |
|- L = ( ZRHom ` ( Z/nZ ` R ) ) |
13 |
|
aks6d1c2a.14 |
|- ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
14 |
|
aks6d1c2a.15 |
|- ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
15 |
|
aks6d1c2a.16 |
|- ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
16 |
|
aks6d1c2a.17 |
|- H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) |
17 |
|
aks6d1c2a.18 |
|- B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
18 |
|
aks6d1c2a.19 |
|- C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
19 |
|
aks6d1c2a.20 |
|- ( ph -> ( Q e. Prime /\ Q || N /\ P =/= Q ) ) |
20 |
|
simpl |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( ( ph /\ b e. C ) /\ c e. C ) ) |
21 |
|
simprl |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> b < c ) |
22 |
20 21
|
jca |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) ) |
23 |
|
simprr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> E. d e. NN c = ( b + ( d x. R ) ) ) |
24 |
22 23
|
jca |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) |
25 |
3
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> K e. Field ) |
26 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> P e. Prime ) |
27 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> R e. NN ) |
28 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> N e. NN ) |
29 |
7
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> P || N ) |
30 |
8
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( N gcd R ) = 1 ) |
31 |
|
0nn0 |
|- 0 e. NN0 |
32 |
31
|
a1i |
|- ( ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) /\ j e. ( 0 ... A ) ) -> 0 e. NN0 ) |
33 |
|
eqid |
|- ( j e. ( 0 ... A ) |-> 0 ) = ( j e. ( 0 ... A ) |-> 0 ) |
34 |
32 33
|
fmptd |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( j e. ( 0 ... A ) |-> 0 ) : ( 0 ... A ) --> NN0 ) |
35 |
10
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> A e. NN0 ) |
36 |
13
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) |
37 |
14
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) |
38 |
15
|
ad5antr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) |
39 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> b e. C ) |
40 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> c e. C ) |
41 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> b < c ) |
42 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) |
43 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
44 |
|
eqid |
|- ( ( c ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ( -g ` ( Poly1 ` K ) ) ( b ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = ( ( c ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ( -g ` ( Poly1 ` K ) ) ( b ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) |
45 |
|
simplr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> d e. NN ) |
46 |
|
simpr |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> c = ( b + ( d x. R ) ) ) |
47 |
1 2 25 26 27 28 29 30 34 9 35 11 12 36 37 38 16 17 18 39 40 41 42 43 44 45 46
|
aks6d1c2lem4 |
|- ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |
48 |
47
|
ex |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) -> ( c = ( b + ( d x. R ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) ) |
49 |
48
|
rexlimdva |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) -> ( E. d e. NN c = ( b + ( d x. R ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) ) |
50 |
49
|
imp |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ E. d e. NN c = ( b + ( d x. R ) ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |
51 |
24 50
|
syl |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |
52 |
|
simprr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> b < c ) |
53 |
|
nfcv |
|- F/_ s ( L ` t ) |
54 |
|
nfcv |
|- F/_ t ( L ` s ) |
55 |
|
fveq2 |
|- ( t = s -> ( L ` t ) = ( L ` s ) ) |
56 |
53 54 55
|
cbvmpt |
|- ( t e. C |-> ( L ` t ) ) = ( s e. C |-> ( L ` s ) ) |
57 |
56
|
a1i |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( t e. C |-> ( L ` t ) ) = ( s e. C |-> ( L ` s ) ) ) |
58 |
|
simpr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = b ) -> s = b ) |
59 |
58
|
fveq2d |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = b ) -> ( L ` s ) = ( L ` b ) ) |
60 |
|
simpllr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> b e. C ) |
61 |
|
fvexd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` b ) e. _V ) |
62 |
57 59 60 61
|
fvmptd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` b ) = ( L ` b ) ) |
63 |
62
|
eqcomd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` b ) = ( ( t e. C |-> ( L ` t ) ) ` b ) ) |
64 |
|
simprl |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) ) |
65 |
|
simpr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = c ) -> s = c ) |
66 |
65
|
fveq2d |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = c ) -> ( L ` s ) = ( L ` c ) ) |
67 |
|
simplr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> c e. C ) |
68 |
|
fvexd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` c ) e. _V ) |
69 |
57 66 67 68
|
fvmptd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` c ) = ( L ` c ) ) |
70 |
64 69
|
eqtrd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` b ) = ( L ` c ) ) |
71 |
63 70
|
eqtrd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` b ) = ( L ` c ) ) |
72 |
71
|
eqcomd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` c ) = ( L ` b ) ) |
73 |
5
|
nnnn0d |
|- ( ph -> R e. NN0 ) |
74 |
73
|
adantr |
|- ( ( ph /\ b e. C ) -> R e. NN0 ) |
75 |
74
|
adantr |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> R e. NN0 ) |
76 |
75
|
adantr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R e. NN0 ) |
77 |
|
fz0ssnn0 |
|- ( 0 ... B ) C_ NN0 |
78 |
77
|
a1i |
|- ( ph -> ( 0 ... B ) C_ NN0 ) |
79 |
78 78
|
jca |
|- ( ph -> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) |
80 |
|
eqid |
|- ( Z/nZ ` R ) = ( Z/nZ ` R ) |
81 |
6 4 7 5 8 11 12 80
|
hashscontpowcl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
82 |
81
|
nn0red |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) |
83 |
81
|
nn0ge0d |
|- ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
84 |
82 83
|
resqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) |
85 |
84
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ ) |
86 |
82 83
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
87 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
88 |
|
flge |
|- ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
89 |
84 87 88
|
syl2anc |
|- ( ph -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
90 |
86 89
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
91 |
85 90
|
jca |
|- ( ph -> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
92 |
|
elnn0z |
|- ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 <-> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
93 |
91 92
|
sylibr |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) |
94 |
17
|
a1i |
|- ( ph -> B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
95 |
94
|
eleq1d |
|- ( ph -> ( B e. NN0 <-> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) ) |
96 |
93 95
|
mpbird |
|- ( ph -> B e. NN0 ) |
97 |
96
|
nn0ge0d |
|- ( ph -> 0 <_ B ) |
98 |
96
|
nn0zd |
|- ( ph -> B e. ZZ ) |
99 |
|
eluz |
|- ( ( 0 e. ZZ /\ B e. ZZ ) -> ( B e. ( ZZ>= ` 0 ) <-> 0 <_ B ) ) |
100 |
87 98 99
|
syl2anc |
|- ( ph -> ( B e. ( ZZ>= ` 0 ) <-> 0 <_ B ) ) |
101 |
97 100
|
mpbird |
|- ( ph -> B e. ( ZZ>= ` 0 ) ) |
102 |
|
fzn0 |
|- ( ( 0 ... B ) =/= (/) <-> B e. ( ZZ>= ` 0 ) ) |
103 |
101 102
|
sylibr |
|- ( ph -> ( 0 ... B ) =/= (/) ) |
104 |
103 103
|
jca |
|- ( ph -> ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) ) |
105 |
|
xpnz |
|- ( ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) <-> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) |
106 |
105
|
biimpi |
|- ( ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) -> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) |
107 |
104 106
|
syl |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) |
108 |
|
ssxpb |
|- ( ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) -> ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) <-> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) ) |
109 |
107 108
|
syl |
|- ( ph -> ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) <-> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) ) |
110 |
79 109
|
mpbird |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) ) |
111 |
|
imass2 |
|- ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ ( E " ( NN0 X. NN0 ) ) ) |
112 |
110 111
|
syl |
|- ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ ( E " ( NN0 X. NN0 ) ) ) |
113 |
|
nfv |
|- F/ o ph |
114 |
19
|
simp1d |
|- ( ph -> Q e. Prime ) |
115 |
19
|
simp2d |
|- ( ph -> Q || N ) |
116 |
19
|
simp3d |
|- ( ph -> P =/= Q ) |
117 |
6 4 7 11 114 115 116
|
aks6d1c2p2 |
|- ( ph -> E : ( NN0 X. NN0 ) -1-1-> NN ) |
118 |
|
f1f |
|- ( E : ( NN0 X. NN0 ) -1-1-> NN -> E : ( NN0 X. NN0 ) --> NN ) |
119 |
117 118
|
syl |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |
120 |
119
|
ffnd |
|- ( ph -> E Fn ( NN0 X. NN0 ) ) |
121 |
120
|
fnfund |
|- ( ph -> Fun E ) |
122 |
119
|
ffvelcdmda |
|- ( ( ph /\ o e. ( NN0 X. NN0 ) ) -> ( E ` o ) e. NN ) |
123 |
113 121 122
|
funimassd |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) C_ NN ) |
124 |
112 123
|
sstrd |
|- ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ NN ) |
125 |
18
|
a1i |
|- ( ph -> C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
126 |
125
|
sseq1d |
|- ( ph -> ( C C_ NN <-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ NN ) ) |
127 |
124 126
|
mpbird |
|- ( ph -> C C_ NN ) |
128 |
127
|
ad2antrr |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> C C_ NN ) |
129 |
|
simpr |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> c e. C ) |
130 |
128 129
|
sseldd |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> c e. NN ) |
131 |
130
|
nnzd |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> c e. ZZ ) |
132 |
131
|
adantr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> c e. ZZ ) |
133 |
|
simplr |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> b e. C ) |
134 |
128 133
|
sseldd |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> b e. NN ) |
135 |
134
|
nnzd |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> b e. ZZ ) |
136 |
135
|
adantr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> b e. ZZ ) |
137 |
80 12
|
zndvds |
|- ( ( R e. NN0 /\ c e. ZZ /\ b e. ZZ ) -> ( ( L ` c ) = ( L ` b ) <-> R || ( c - b ) ) ) |
138 |
76 132 136 137
|
syl3anc |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( L ` c ) = ( L ` b ) <-> R || ( c - b ) ) ) |
139 |
72 138
|
mpbid |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R || ( c - b ) ) |
140 |
76
|
nn0zd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R e. ZZ ) |
141 |
132 136
|
zsubcld |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( c - b ) e. ZZ ) |
142 |
|
divides |
|- ( ( R e. ZZ /\ ( c - b ) e. ZZ ) -> ( R || ( c - b ) <-> E. d e. ZZ ( d x. R ) = ( c - b ) ) ) |
143 |
140 141 142
|
syl2anc |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( R || ( c - b ) <-> E. d e. ZZ ( d x. R ) = ( c - b ) ) ) |
144 |
143
|
biimpd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( R || ( c - b ) -> E. d e. ZZ ( d x. R ) = ( c - b ) ) ) |
145 |
139 144
|
mpd |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> E. d e. ZZ ( d x. R ) = ( c - b ) ) |
146 |
|
simprl |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. ZZ ) |
147 |
130
|
ad2antrr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c e. NN ) |
148 |
147
|
nnred |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c e. RR ) |
149 |
134
|
ad2antrr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b e. NN ) |
150 |
149
|
nnred |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b e. RR ) |
151 |
148 150
|
resubcld |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( c - b ) e. RR ) |
152 |
5
|
nnrpd |
|- ( ph -> R e. RR+ ) |
153 |
152
|
adantr |
|- ( ( ph /\ b e. C ) -> R e. RR+ ) |
154 |
153
|
adantr |
|- ( ( ( ph /\ b e. C ) /\ c e. C ) -> R e. RR+ ) |
155 |
154
|
adantr |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R e. RR+ ) |
156 |
155
|
adantr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R e. RR+ ) |
157 |
156
|
rpred |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R e. RR ) |
158 |
52
|
adantr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b < c ) |
159 |
150 148
|
posdifd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( b < c <-> 0 < ( c - b ) ) ) |
160 |
158 159
|
mpbid |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < ( c - b ) ) |
161 |
156
|
rpgt0d |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < R ) |
162 |
151 157 160 161
|
divgt0d |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < ( ( c - b ) / R ) ) |
163 |
157
|
recnd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R e. CC ) |
164 |
146
|
zred |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. RR ) |
165 |
164
|
recnd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. CC ) |
166 |
163 165
|
mulcomd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( R x. d ) = ( d x. R ) ) |
167 |
|
simprr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( d x. R ) = ( c - b ) ) |
168 |
166 167
|
eqtrd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( R x. d ) = ( c - b ) ) |
169 |
151
|
recnd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( c - b ) e. CC ) |
170 |
161
|
gt0ne0d |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R =/= 0 ) |
171 |
169 163 165 170
|
divmuld |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( ( ( c - b ) / R ) = d <-> ( R x. d ) = ( c - b ) ) ) |
172 |
168 171
|
mpbird |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( ( c - b ) / R ) = d ) |
173 |
162 172
|
breqtrd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < d ) |
174 |
146 173
|
jca |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( d e. ZZ /\ 0 < d ) ) |
175 |
|
elnnz |
|- ( d e. NN <-> ( d e. ZZ /\ 0 < d ) ) |
176 |
174 175
|
sylibr |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. NN ) |
177 |
167
|
eqcomd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( c - b ) = ( d x. R ) ) |
178 |
148
|
recnd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c e. CC ) |
179 |
150
|
recnd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b e. CC ) |
180 |
167 169
|
eqeltrd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( d x. R ) e. CC ) |
181 |
178 179 180
|
subaddd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( ( c - b ) = ( d x. R ) <-> ( b + ( d x. R ) ) = c ) ) |
182 |
177 181
|
mpbid |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( b + ( d x. R ) ) = c ) |
183 |
182
|
eqcomd |
|- ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c = ( b + ( d x. R ) ) ) |
184 |
145 176 183
|
reximssdv |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> E. d e. NN c = ( b + ( d x. R ) ) ) |
185 |
52 184
|
jca |
|- ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) |
186 |
|
fzfid |
|- ( ph -> ( 0 ... B ) e. Fin ) |
187 |
|
xpfi |
|- ( ( ( 0 ... B ) e. Fin /\ ( 0 ... B ) e. Fin ) -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. Fin ) |
188 |
186 186 187
|
syl2anc |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. Fin ) |
189 |
|
imafi |
|- ( ( Fun E /\ ( ( 0 ... B ) X. ( 0 ... B ) ) e. Fin ) -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) e. Fin ) |
190 |
121 188 189
|
syl2anc |
|- ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) e. Fin ) |
191 |
125
|
eleq1d |
|- ( ph -> ( C e. Fin <-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) e. Fin ) ) |
192 |
190 191
|
mpbird |
|- ( ph -> C e. Fin ) |
193 |
80
|
zncrng |
|- ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) |
194 |
73 193
|
syl |
|- ( ph -> ( Z/nZ ` R ) e. CRing ) |
195 |
|
crngring |
|- ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) |
196 |
194 195
|
syl |
|- ( ph -> ( Z/nZ ` R ) e. Ring ) |
197 |
12
|
zrhrhm |
|- ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) |
198 |
196 197
|
syl |
|- ( ph -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) |
199 |
198
|
imaexd |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V ) |
200 |
|
hashclb |
|- ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V -> ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin <-> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) ) |
201 |
199 200
|
syl |
|- ( ph -> ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin <-> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) ) |
202 |
81 201
|
mpbird |
|- ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin ) |
203 |
|
hashcl |
|- ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
204 |
202 203
|
syl |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) |
205 |
204
|
nn0red |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) |
206 |
204
|
nn0ge0d |
|- ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
207 |
|
sqrtmsq |
|- ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
208 |
205 206 207
|
syl2anc |
|- ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) |
209 |
208
|
eqcomd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
210 |
205 206
|
jca |
|- ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
211 |
|
sqrtmul |
|- ( ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) /\ ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
212 |
210 210 211
|
syl2anc |
|- ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
213 |
205 206
|
resqrtcld |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) |
214 |
213
|
flcld |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ ) |
215 |
205 206
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) |
216 |
213 87 88
|
syl2anc |
|- ( ph -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
217 |
215 216
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) |
218 |
214 217
|
jca |
|- ( ph -> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) |
219 |
218 92
|
sylibr |
|- ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) |
220 |
219 95
|
mpbird |
|- ( ph -> B e. NN0 ) |
221 |
220
|
nn0red |
|- ( ph -> B e. RR ) |
222 |
|
1red |
|- ( ph -> 1 e. RR ) |
223 |
221 222
|
readdcld |
|- ( ph -> ( B + 1 ) e. RR ) |
224 |
|
flltp1 |
|- ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) < ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) + 1 ) ) |
225 |
213 224
|
syl |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) < ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) + 1 ) ) |
226 |
94
|
oveq1d |
|- ( ph -> ( B + 1 ) = ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) + 1 ) ) |
227 |
225 226
|
breqtrrd |
|- ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) < ( B + 1 ) ) |
228 |
213 223 213 223 215 227 215 227
|
ltmul12ad |
|- ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( ( B + 1 ) x. ( B + 1 ) ) ) |
229 |
212 228
|
eqbrtrd |
|- ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( ( B + 1 ) x. ( B + 1 ) ) ) |
230 |
209 229
|
eqbrtrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( ( B + 1 ) x. ( B + 1 ) ) ) |
231 |
|
hashfz0 |
|- ( B e. NN0 -> ( # ` ( 0 ... B ) ) = ( B + 1 ) ) |
232 |
220 231
|
syl |
|- ( ph -> ( # ` ( 0 ... B ) ) = ( B + 1 ) ) |
233 |
232 232
|
oveq12d |
|- ( ph -> ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) = ( ( B + 1 ) x. ( B + 1 ) ) ) |
234 |
230 233
|
breqtrrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) ) |
235 |
186 186
|
jca |
|- ( ph -> ( ( 0 ... B ) e. Fin /\ ( 0 ... B ) e. Fin ) ) |
236 |
|
hashxp |
|- ( ( ( 0 ... B ) e. Fin /\ ( 0 ... B ) e. Fin ) -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) ) |
237 |
235 236
|
syl |
|- ( ph -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) ) |
238 |
234 237
|
breqtrrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
239 |
|
ovexd |
|- ( ph -> ( 0 ... B ) e. _V ) |
240 |
239 239
|
jca |
|- ( ph -> ( ( 0 ... B ) e. _V /\ ( 0 ... B ) e. _V ) ) |
241 |
|
xpexg |
|- ( ( ( 0 ... B ) e. _V /\ ( 0 ... B ) e. _V ) -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. _V ) |
242 |
240 241
|
syl |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. _V ) |
243 |
242
|
mptexd |
|- ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) e. _V ) |
244 |
120
|
adantr |
|- ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> E Fn ( NN0 X. NN0 ) ) |
245 |
110
|
sselda |
|- ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> w e. ( NN0 X. NN0 ) ) |
246 |
|
simpr |
|- ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
247 |
244 245 246
|
fnfvimad |
|- ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> ( E ` w ) e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
248 |
|
eqid |
|- ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) |
249 |
247 248
|
fmptd |
|- ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
250 |
119 110
|
feqresmpt |
|- ( ph -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) ) |
251 |
250
|
feq1d |
|- ( ph -> ( ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
252 |
249 251
|
mpbird |
|- ( ph -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
253 |
|
f1resf1 |
|- ( ( E : ( NN0 X. NN0 ) -1-1-> NN /\ ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) /\ ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
254 |
117 110 252 253
|
syl3anc |
|- ( ph -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
255 |
|
eqidd |
|- ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) = ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
256 |
|
eqidd |
|- ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
257 |
250 255 256
|
f1eq123d |
|- ( ph -> ( ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
258 |
254 257
|
mpbid |
|- ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
259 |
|
df-ima |
|- ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ran ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) |
260 |
259
|
a1i |
|- ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ran ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
261 |
250
|
rneqd |
|- ( ph -> ran ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) ) |
262 |
260 261
|
eqtr2d |
|- ( ph -> ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
263 |
258 262
|
jca |
|- ( ph -> ( ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) /\ ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
264 |
|
dff1o5 |
|- ( ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) /\ ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
265 |
263 264
|
sylibr |
|- ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
266 |
|
f1oeq1 |
|- ( u = ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) -> ( u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
267 |
243 265 266
|
spcedv |
|- ( ph -> E. u u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) |
268 |
|
hasheqf1oi |
|- ( ( ( 0 ... B ) X. ( 0 ... B ) ) e. _V -> ( E. u u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) ) |
269 |
242 268
|
syl |
|- ( ph -> ( E. u u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) ) |
270 |
267 269
|
mpd |
|- ( ph -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
271 |
238 270
|
breqtrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
272 |
125
|
fveq2d |
|- ( ph -> ( # ` C ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) |
273 |
271 272
|
breqtrrd |
|- ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( # ` C ) ) |
274 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
275 |
|
eqid |
|- ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) |
276 |
274 275
|
rhmf |
|- ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) |
277 |
198 276
|
syl |
|- ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) |
278 |
277
|
ffnd |
|- ( ph -> L Fn ZZ ) |
279 |
278
|
adantr |
|- ( ( ph /\ t e. C ) -> L Fn ZZ ) |
280 |
|
resss |
|- ( E |` ( NN0 X. NN0 ) ) C_ E |
281 |
280
|
a1i |
|- ( ph -> ( E |` ( NN0 X. NN0 ) ) C_ E ) |
282 |
|
rnss |
|- ( ( E |` ( NN0 X. NN0 ) ) C_ E -> ran ( E |` ( NN0 X. NN0 ) ) C_ ran E ) |
283 |
281 282
|
syl |
|- ( ph -> ran ( E |` ( NN0 X. NN0 ) ) C_ ran E ) |
284 |
|
df-ima |
|- ( E " ( NN0 X. NN0 ) ) = ran ( E |` ( NN0 X. NN0 ) ) |
285 |
284
|
a1i |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) = ran ( E |` ( NN0 X. NN0 ) ) ) |
286 |
285
|
sseq1d |
|- ( ph -> ( ( E " ( NN0 X. NN0 ) ) C_ ran E <-> ran ( E |` ( NN0 X. NN0 ) ) C_ ran E ) ) |
287 |
283 286
|
mpbird |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ran E ) |
288 |
|
frn |
|- ( E : ( NN0 X. NN0 ) --> NN -> ran E C_ NN ) |
289 |
119 288
|
syl |
|- ( ph -> ran E C_ NN ) |
290 |
287 289
|
sstrd |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) C_ NN ) |
291 |
|
nnssz |
|- NN C_ ZZ |
292 |
291
|
a1i |
|- ( ph -> NN C_ ZZ ) |
293 |
290 292
|
sstrd |
|- ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) |
294 |
293
|
adantr |
|- ( ( ph /\ t e. C ) -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) |
295 |
125
|
sseq1d |
|- ( ph -> ( C C_ ( E " ( NN0 X. NN0 ) ) <-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ ( E " ( NN0 X. NN0 ) ) ) ) |
296 |
112 295
|
mpbird |
|- ( ph -> C C_ ( E " ( NN0 X. NN0 ) ) ) |
297 |
296
|
sseld |
|- ( ph -> ( t e. C -> t e. ( E " ( NN0 X. NN0 ) ) ) ) |
298 |
297
|
imp |
|- ( ( ph /\ t e. C ) -> t e. ( E " ( NN0 X. NN0 ) ) ) |
299 |
|
fnfvima |
|- ( ( L Fn ZZ /\ ( E " ( NN0 X. NN0 ) ) C_ ZZ /\ t e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` t ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
300 |
279 294 298 299
|
syl3anc |
|- ( ( ph /\ t e. C ) -> ( L ` t ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
301 |
|
eqid |
|- ( t e. C |-> ( L ` t ) ) = ( t e. C |-> ( L ` t ) ) |
302 |
300 301
|
fmptd |
|- ( ph -> ( t e. C |-> ( L ` t ) ) : C --> ( L " ( E " ( NN0 X. NN0 ) ) ) ) |
303 |
|
nnssre |
|- NN C_ RR |
304 |
303
|
a1i |
|- ( ph -> NN C_ RR ) |
305 |
127 304
|
sstrd |
|- ( ph -> C C_ RR ) |
306 |
192 202 273 302 305
|
hashnexinjle |
|- ( ph -> E. b e. C E. c e. C ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) |
307 |
185 306
|
reximddv2 |
|- ( ph -> E. b e. C E. c e. C ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) |
308 |
51 307
|
r19.29vva |
|- ( ph -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |