| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2a.1 |  |-  .~ = { <. e , f >. | ( e e. NN /\ f e. ( Base ` ( Poly1 ` K ) ) /\ A. y e. ( ( mulGrp ` K ) PrimRoots R ) ( e ( .g ` ( mulGrp ` K ) ) ( ( ( eval1 ` K ) ` f ) ` y ) ) = ( ( ( eval1 ` K ) ` f ) ` ( e ( .g ` ( mulGrp ` K ) ) y ) ) ) } | 
						
							| 2 |  | aks6d1c2a.2 |  |-  P = ( chr ` K ) | 
						
							| 3 |  | aks6d1c2a.3 |  |-  ( ph -> K e. Field ) | 
						
							| 4 |  | aks6d1c2a.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | aks6d1c2a.5 |  |-  ( ph -> R e. NN ) | 
						
							| 6 |  | aks6d1c2a.6 |  |-  ( ph -> N e. NN ) | 
						
							| 7 |  | aks6d1c2a.7 |  |-  ( ph -> P || N ) | 
						
							| 8 |  | aks6d1c2a.8 |  |-  ( ph -> ( N gcd R ) = 1 ) | 
						
							| 9 |  | aks6d1c2a.10 |  |-  G = ( g e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( mulGrp ` ( Poly1 ` K ) ) gsum ( i e. ( 0 ... A ) |-> ( ( g ` i ) ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` i ) ) ) ) ) ) ) | 
						
							| 10 |  | aks6d1c2a.11 |  |-  ( ph -> A e. NN0 ) | 
						
							| 11 |  | aks6d1c2a.12 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 12 |  | aks6d1c2a.13 |  |-  L = ( ZRHom ` ( Z/nZ ` R ) ) | 
						
							| 13 |  | aks6d1c2a.14 |  |-  ( ph -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 14 |  | aks6d1c2a.15 |  |-  ( ph -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 15 |  | aks6d1c2a.16 |  |-  ( ph -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 16 |  | aks6d1c2a.17 |  |-  H = ( h e. ( NN0 ^m ( 0 ... A ) ) |-> ( ( ( eval1 ` K ) ` ( G ` h ) ) ` M ) ) | 
						
							| 17 |  | aks6d1c2a.18 |  |-  B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 18 |  | aks6d1c2a.19 |  |-  C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) | 
						
							| 19 |  | aks6d1c2a.20 |  |-  ( ph -> ( Q e. Prime /\ Q || N /\ P =/= Q ) ) | 
						
							| 20 |  | simpl |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( ( ph /\ b e. C ) /\ c e. C ) ) | 
						
							| 21 |  | simprl |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> b < c ) | 
						
							| 22 | 20 21 | jca |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) ) | 
						
							| 23 |  | simprr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> E. d e. NN c = ( b + ( d x. R ) ) ) | 
						
							| 24 | 22 23 | jca |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) | 
						
							| 25 | 3 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> K e. Field ) | 
						
							| 26 | 4 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> P e. Prime ) | 
						
							| 27 | 5 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> R e. NN ) | 
						
							| 28 | 6 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> N e. NN ) | 
						
							| 29 | 7 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> P || N ) | 
						
							| 30 | 8 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( N gcd R ) = 1 ) | 
						
							| 31 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 32 | 31 | a1i |  |-  ( ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) /\ j e. ( 0 ... A ) ) -> 0 e. NN0 ) | 
						
							| 33 |  | eqid |  |-  ( j e. ( 0 ... A ) |-> 0 ) = ( j e. ( 0 ... A ) |-> 0 ) | 
						
							| 34 | 32 33 | fmptd |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( j e. ( 0 ... A ) |-> 0 ) : ( 0 ... A ) --> NN0 ) | 
						
							| 35 | 10 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> A e. NN0 ) | 
						
							| 36 | 13 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> A. a e. ( 1 ... A ) N .~ ( ( var1 ` K ) ( +g ` ( Poly1 ` K ) ) ( ( algSc ` ( Poly1 ` K ) ) ` ( ( ZRHom ` K ) ` a ) ) ) ) | 
						
							| 37 | 14 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( x e. ( Base ` K ) |-> ( P ( .g ` ( mulGrp ` K ) ) x ) ) e. ( K RingIso K ) ) | 
						
							| 38 | 15 | ad5antr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> M e. ( ( mulGrp ` K ) PrimRoots R ) ) | 
						
							| 39 |  | simp-5r |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> b e. C ) | 
						
							| 40 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> c e. C ) | 
						
							| 41 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> b < c ) | 
						
							| 42 |  | eqid |  |-  ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) | 
						
							| 43 |  | eqid |  |-  ( var1 ` K ) = ( var1 ` K ) | 
						
							| 44 |  | eqid |  |-  ( ( c ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ( -g ` ( Poly1 ` K ) ) ( b ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) = ( ( c ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ( -g ` ( Poly1 ` K ) ) ( b ( .g ` ( mulGrp ` ( Poly1 ` K ) ) ) ( var1 ` K ) ) ) | 
						
							| 45 |  | simplr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> d e. NN ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> c = ( b + ( d x. R ) ) ) | 
						
							| 47 | 1 2 25 26 27 28 29 30 34 9 35 11 12 36 37 38 16 17 18 39 40 41 42 43 44 45 46 | aks6d1c2lem4 |  |-  ( ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) /\ c = ( b + ( d x. R ) ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) | 
						
							| 48 | 47 | ex |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ d e. NN ) -> ( c = ( b + ( d x. R ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) ) | 
						
							| 49 | 48 | rexlimdva |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) -> ( E. d e. NN c = ( b + ( d x. R ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) ) | 
						
							| 50 | 49 | imp |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ b < c ) /\ E. d e. NN c = ( b + ( d x. R ) ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) | 
						
							| 51 | 24 50 | syl |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) | 
						
							| 52 |  | simprr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> b < c ) | 
						
							| 53 |  | nfcv |  |-  F/_ s ( L ` t ) | 
						
							| 54 |  | nfcv |  |-  F/_ t ( L ` s ) | 
						
							| 55 |  | fveq2 |  |-  ( t = s -> ( L ` t ) = ( L ` s ) ) | 
						
							| 56 | 53 54 55 | cbvmpt |  |-  ( t e. C |-> ( L ` t ) ) = ( s e. C |-> ( L ` s ) ) | 
						
							| 57 | 56 | a1i |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( t e. C |-> ( L ` t ) ) = ( s e. C |-> ( L ` s ) ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = b ) -> s = b ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = b ) -> ( L ` s ) = ( L ` b ) ) | 
						
							| 60 |  | simpllr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> b e. C ) | 
						
							| 61 |  | fvexd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` b ) e. _V ) | 
						
							| 62 | 57 59 60 61 | fvmptd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` b ) = ( L ` b ) ) | 
						
							| 63 | 62 | eqcomd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` b ) = ( ( t e. C |-> ( L ` t ) ) ` b ) ) | 
						
							| 64 |  | simprl |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) ) | 
						
							| 65 |  | simpr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = c ) -> s = c ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ s = c ) -> ( L ` s ) = ( L ` c ) ) | 
						
							| 67 |  | simplr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> c e. C ) | 
						
							| 68 |  | fvexd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` c ) e. _V ) | 
						
							| 69 | 57 66 67 68 | fvmptd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` c ) = ( L ` c ) ) | 
						
							| 70 | 64 69 | eqtrd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( t e. C |-> ( L ` t ) ) ` b ) = ( L ` c ) ) | 
						
							| 71 | 63 70 | eqtrd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` b ) = ( L ` c ) ) | 
						
							| 72 | 71 | eqcomd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( L ` c ) = ( L ` b ) ) | 
						
							| 73 | 5 | nnnn0d |  |-  ( ph -> R e. NN0 ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ b e. C ) -> R e. NN0 ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> R e. NN0 ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R e. NN0 ) | 
						
							| 77 |  | fz0ssnn0 |  |-  ( 0 ... B ) C_ NN0 | 
						
							| 78 | 77 | a1i |  |-  ( ph -> ( 0 ... B ) C_ NN0 ) | 
						
							| 79 | 78 78 | jca |  |-  ( ph -> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) | 
						
							| 80 |  | eqid |  |-  ( Z/nZ ` R ) = ( Z/nZ ` R ) | 
						
							| 81 | 6 4 7 5 8 11 12 80 | hashscontpowcl |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 82 | 81 | nn0red |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) | 
						
							| 83 | 81 | nn0ge0d |  |-  ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 84 | 82 83 | resqrtcld |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) | 
						
							| 85 | 84 | flcld |  |-  ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ ) | 
						
							| 86 | 82 83 | sqrtge0d |  |-  ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 87 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 88 |  | flge |  |-  ( ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 89 | 84 87 88 | syl2anc |  |-  ( ph -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 90 | 86 89 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 91 | 85 90 | jca |  |-  ( ph -> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 92 |  | elnn0z |  |-  ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 <-> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 93 | 91 92 | sylibr |  |-  ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) | 
						
							| 94 | 17 | a1i |  |-  ( ph -> B = ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 95 | 94 | eleq1d |  |-  ( ph -> ( B e. NN0 <-> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) ) | 
						
							| 96 | 93 95 | mpbird |  |-  ( ph -> B e. NN0 ) | 
						
							| 97 | 96 | nn0ge0d |  |-  ( ph -> 0 <_ B ) | 
						
							| 98 | 96 | nn0zd |  |-  ( ph -> B e. ZZ ) | 
						
							| 99 |  | eluz |  |-  ( ( 0 e. ZZ /\ B e. ZZ ) -> ( B e. ( ZZ>= ` 0 ) <-> 0 <_ B ) ) | 
						
							| 100 | 87 98 99 | syl2anc |  |-  ( ph -> ( B e. ( ZZ>= ` 0 ) <-> 0 <_ B ) ) | 
						
							| 101 | 97 100 | mpbird |  |-  ( ph -> B e. ( ZZ>= ` 0 ) ) | 
						
							| 102 |  | fzn0 |  |-  ( ( 0 ... B ) =/= (/) <-> B e. ( ZZ>= ` 0 ) ) | 
						
							| 103 | 101 102 | sylibr |  |-  ( ph -> ( 0 ... B ) =/= (/) ) | 
						
							| 104 | 103 103 | jca |  |-  ( ph -> ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) ) | 
						
							| 105 |  | xpnz |  |-  ( ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) <-> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) | 
						
							| 106 | 105 | biimpi |  |-  ( ( ( 0 ... B ) =/= (/) /\ ( 0 ... B ) =/= (/) ) -> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) | 
						
							| 107 | 104 106 | syl |  |-  ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) ) | 
						
							| 108 |  | ssxpb |  |-  ( ( ( 0 ... B ) X. ( 0 ... B ) ) =/= (/) -> ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) <-> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) ) | 
						
							| 109 | 107 108 | syl |  |-  ( ph -> ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) <-> ( ( 0 ... B ) C_ NN0 /\ ( 0 ... B ) C_ NN0 ) ) ) | 
						
							| 110 | 79 109 | mpbird |  |-  ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) ) | 
						
							| 111 |  | imass2 |  |-  ( ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 112 | 110 111 | syl |  |-  ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 113 |  | nfv |  |-  F/ o ph | 
						
							| 114 | 19 | simp1d |  |-  ( ph -> Q e. Prime ) | 
						
							| 115 | 19 | simp2d |  |-  ( ph -> Q || N ) | 
						
							| 116 | 19 | simp3d |  |-  ( ph -> P =/= Q ) | 
						
							| 117 | 6 4 7 11 114 115 116 | aks6d1c2p2 |  |-  ( ph -> E : ( NN0 X. NN0 ) -1-1-> NN ) | 
						
							| 118 |  | f1f |  |-  ( E : ( NN0 X. NN0 ) -1-1-> NN -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 119 | 117 118 | syl |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 120 | 119 | ffnd |  |-  ( ph -> E Fn ( NN0 X. NN0 ) ) | 
						
							| 121 | 120 | fnfund |  |-  ( ph -> Fun E ) | 
						
							| 122 | 119 | ffvelcdmda |  |-  ( ( ph /\ o e. ( NN0 X. NN0 ) ) -> ( E ` o ) e. NN ) | 
						
							| 123 | 113 121 122 | funimassd |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ NN ) | 
						
							| 124 | 112 123 | sstrd |  |-  ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ NN ) | 
						
							| 125 | 18 | a1i |  |-  ( ph -> C = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 126 | 125 | sseq1d |  |-  ( ph -> ( C C_ NN <-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ NN ) ) | 
						
							| 127 | 124 126 | mpbird |  |-  ( ph -> C C_ NN ) | 
						
							| 128 | 127 | ad2antrr |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> C C_ NN ) | 
						
							| 129 |  | simpr |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> c e. C ) | 
						
							| 130 | 128 129 | sseldd |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> c e. NN ) | 
						
							| 131 | 130 | nnzd |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> c e. ZZ ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> c e. ZZ ) | 
						
							| 133 |  | simplr |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> b e. C ) | 
						
							| 134 | 128 133 | sseldd |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> b e. NN ) | 
						
							| 135 | 134 | nnzd |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> b e. ZZ ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> b e. ZZ ) | 
						
							| 137 | 80 12 | zndvds |  |-  ( ( R e. NN0 /\ c e. ZZ /\ b e. ZZ ) -> ( ( L ` c ) = ( L ` b ) <-> R || ( c - b ) ) ) | 
						
							| 138 | 76 132 136 137 | syl3anc |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( ( L ` c ) = ( L ` b ) <-> R || ( c - b ) ) ) | 
						
							| 139 | 72 138 | mpbid |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R || ( c - b ) ) | 
						
							| 140 | 76 | nn0zd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R e. ZZ ) | 
						
							| 141 | 132 136 | zsubcld |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( c - b ) e. ZZ ) | 
						
							| 142 |  | divides |  |-  ( ( R e. ZZ /\ ( c - b ) e. ZZ ) -> ( R || ( c - b ) <-> E. d e. ZZ ( d x. R ) = ( c - b ) ) ) | 
						
							| 143 | 140 141 142 | syl2anc |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( R || ( c - b ) <-> E. d e. ZZ ( d x. R ) = ( c - b ) ) ) | 
						
							| 144 | 143 | biimpd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( R || ( c - b ) -> E. d e. ZZ ( d x. R ) = ( c - b ) ) ) | 
						
							| 145 | 139 144 | mpd |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> E. d e. ZZ ( d x. R ) = ( c - b ) ) | 
						
							| 146 |  | simprl |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. ZZ ) | 
						
							| 147 | 130 | ad2antrr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c e. NN ) | 
						
							| 148 | 147 | nnred |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c e. RR ) | 
						
							| 149 | 134 | ad2antrr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b e. NN ) | 
						
							| 150 | 149 | nnred |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b e. RR ) | 
						
							| 151 | 148 150 | resubcld |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( c - b ) e. RR ) | 
						
							| 152 | 5 | nnrpd |  |-  ( ph -> R e. RR+ ) | 
						
							| 153 | 152 | adantr |  |-  ( ( ph /\ b e. C ) -> R e. RR+ ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ( ph /\ b e. C ) /\ c e. C ) -> R e. RR+ ) | 
						
							| 155 | 154 | adantr |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> R e. RR+ ) | 
						
							| 156 | 155 | adantr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R e. RR+ ) | 
						
							| 157 | 156 | rpred |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R e. RR ) | 
						
							| 158 | 52 | adantr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b < c ) | 
						
							| 159 | 150 148 | posdifd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( b < c <-> 0 < ( c - b ) ) ) | 
						
							| 160 | 158 159 | mpbid |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < ( c - b ) ) | 
						
							| 161 | 156 | rpgt0d |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < R ) | 
						
							| 162 | 151 157 160 161 | divgt0d |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < ( ( c - b ) / R ) ) | 
						
							| 163 | 157 | recnd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R e. CC ) | 
						
							| 164 | 146 | zred |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. RR ) | 
						
							| 165 | 164 | recnd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. CC ) | 
						
							| 166 | 163 165 | mulcomd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( R x. d ) = ( d x. R ) ) | 
						
							| 167 |  | simprr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( d x. R ) = ( c - b ) ) | 
						
							| 168 | 166 167 | eqtrd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( R x. d ) = ( c - b ) ) | 
						
							| 169 | 151 | recnd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( c - b ) e. CC ) | 
						
							| 170 | 161 | gt0ne0d |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> R =/= 0 ) | 
						
							| 171 | 169 163 165 170 | divmuld |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( ( ( c - b ) / R ) = d <-> ( R x. d ) = ( c - b ) ) ) | 
						
							| 172 | 168 171 | mpbird |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( ( c - b ) / R ) = d ) | 
						
							| 173 | 162 172 | breqtrd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> 0 < d ) | 
						
							| 174 | 146 173 | jca |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( d e. ZZ /\ 0 < d ) ) | 
						
							| 175 |  | elnnz |  |-  ( d e. NN <-> ( d e. ZZ /\ 0 < d ) ) | 
						
							| 176 | 174 175 | sylibr |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> d e. NN ) | 
						
							| 177 | 167 | eqcomd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( c - b ) = ( d x. R ) ) | 
						
							| 178 | 148 | recnd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c e. CC ) | 
						
							| 179 | 150 | recnd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> b e. CC ) | 
						
							| 180 | 167 169 | eqeltrd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( d x. R ) e. CC ) | 
						
							| 181 | 178 179 180 | subaddd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( ( c - b ) = ( d x. R ) <-> ( b + ( d x. R ) ) = c ) ) | 
						
							| 182 | 177 181 | mpbid |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> ( b + ( d x. R ) ) = c ) | 
						
							| 183 | 182 | eqcomd |  |-  ( ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) /\ ( d e. ZZ /\ ( d x. R ) = ( c - b ) ) ) -> c = ( b + ( d x. R ) ) ) | 
						
							| 184 | 145 176 183 | reximssdv |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> E. d e. NN c = ( b + ( d x. R ) ) ) | 
						
							| 185 | 52 184 | jca |  |-  ( ( ( ( ph /\ b e. C ) /\ c e. C ) /\ ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) -> ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) | 
						
							| 186 |  | fzfid |  |-  ( ph -> ( 0 ... B ) e. Fin ) | 
						
							| 187 |  | xpfi |  |-  ( ( ( 0 ... B ) e. Fin /\ ( 0 ... B ) e. Fin ) -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. Fin ) | 
						
							| 188 | 186 186 187 | syl2anc |  |-  ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. Fin ) | 
						
							| 189 |  | imafi |  |-  ( ( Fun E /\ ( ( 0 ... B ) X. ( 0 ... B ) ) e. Fin ) -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) e. Fin ) | 
						
							| 190 | 121 188 189 | syl2anc |  |-  ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) e. Fin ) | 
						
							| 191 | 125 | eleq1d |  |-  ( ph -> ( C e. Fin <-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) e. Fin ) ) | 
						
							| 192 | 190 191 | mpbird |  |-  ( ph -> C e. Fin ) | 
						
							| 193 | 80 | zncrng |  |-  ( R e. NN0 -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 194 | 73 193 | syl |  |-  ( ph -> ( Z/nZ ` R ) e. CRing ) | 
						
							| 195 |  | crngring |  |-  ( ( Z/nZ ` R ) e. CRing -> ( Z/nZ ` R ) e. Ring ) | 
						
							| 196 | 194 195 | syl |  |-  ( ph -> ( Z/nZ ` R ) e. Ring ) | 
						
							| 197 | 12 | zrhrhm |  |-  ( ( Z/nZ ` R ) e. Ring -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) | 
						
							| 198 | 196 197 | syl |  |-  ( ph -> L e. ( ZZring RingHom ( Z/nZ ` R ) ) ) | 
						
							| 199 | 198 | imaexd |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V ) | 
						
							| 200 |  | hashclb |  |-  ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. _V -> ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin <-> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) ) | 
						
							| 201 | 199 200 | syl |  |-  ( ph -> ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin <-> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) ) | 
						
							| 202 | 81 201 | mpbird |  |-  ( ph -> ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin ) | 
						
							| 203 |  | hashcl |  |-  ( ( L " ( E " ( NN0 X. NN0 ) ) ) e. Fin -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 204 | 202 203 | syl |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. NN0 ) | 
						
							| 205 | 204 | nn0red |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR ) | 
						
							| 206 | 204 | nn0ge0d |  |-  ( ph -> 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 207 |  | sqrtmsq |  |-  ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 208 | 205 206 207 | syl2anc |  |-  ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) | 
						
							| 209 | 208 | eqcomd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) = ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 210 | 205 206 | jca |  |-  ( ph -> ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 211 |  | sqrtmul |  |-  ( ( ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) /\ ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) e. RR /\ 0 <_ ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 212 | 210 210 211 | syl2anc |  |-  ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) = ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 213 | 205 206 | resqrtcld |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR ) | 
						
							| 214 | 213 | flcld |  |-  ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ ) | 
						
							| 215 | 205 206 | sqrtge0d |  |-  ( ph -> 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) | 
						
							| 216 | 213 87 88 | syl2anc |  |-  ( ph -> ( 0 <_ ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) <-> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 217 | 215 216 | mpbid |  |-  ( ph -> 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) | 
						
							| 218 | 214 217 | jca |  |-  ( ph -> ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. ZZ /\ 0 <_ ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) ) ) | 
						
							| 219 | 218 92 | sylibr |  |-  ( ph -> ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) e. NN0 ) | 
						
							| 220 | 219 95 | mpbird |  |-  ( ph -> B e. NN0 ) | 
						
							| 221 | 220 | nn0red |  |-  ( ph -> B e. RR ) | 
						
							| 222 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 223 | 221 222 | readdcld |  |-  ( ph -> ( B + 1 ) e. RR ) | 
						
							| 224 |  | flltp1 |  |-  ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) e. RR -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) < ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) + 1 ) ) | 
						
							| 225 | 213 224 | syl |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) < ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) + 1 ) ) | 
						
							| 226 | 94 | oveq1d |  |-  ( ph -> ( B + 1 ) = ( ( |_ ` ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) + 1 ) ) | 
						
							| 227 | 225 226 | breqtrrd |  |-  ( ph -> ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) < ( B + 1 ) ) | 
						
							| 228 | 213 223 213 223 215 227 215 227 | ltmul12ad |  |-  ( ph -> ( ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) x. ( sqrt ` ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( ( B + 1 ) x. ( B + 1 ) ) ) | 
						
							| 229 | 212 228 | eqbrtrd |  |-  ( ph -> ( sqrt ` ( ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) x. ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) ) ) < ( ( B + 1 ) x. ( B + 1 ) ) ) | 
						
							| 230 | 209 229 | eqbrtrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( ( B + 1 ) x. ( B + 1 ) ) ) | 
						
							| 231 |  | hashfz0 |  |-  ( B e. NN0 -> ( # ` ( 0 ... B ) ) = ( B + 1 ) ) | 
						
							| 232 | 220 231 | syl |  |-  ( ph -> ( # ` ( 0 ... B ) ) = ( B + 1 ) ) | 
						
							| 233 | 232 232 | oveq12d |  |-  ( ph -> ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) = ( ( B + 1 ) x. ( B + 1 ) ) ) | 
						
							| 234 | 230 233 | breqtrrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) ) | 
						
							| 235 | 186 186 | jca |  |-  ( ph -> ( ( 0 ... B ) e. Fin /\ ( 0 ... B ) e. Fin ) ) | 
						
							| 236 |  | hashxp |  |-  ( ( ( 0 ... B ) e. Fin /\ ( 0 ... B ) e. Fin ) -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) ) | 
						
							| 237 | 235 236 | syl |  |-  ( ph -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( ( # ` ( 0 ... B ) ) x. ( # ` ( 0 ... B ) ) ) ) | 
						
							| 238 | 234 237 | breqtrrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 239 |  | ovexd |  |-  ( ph -> ( 0 ... B ) e. _V ) | 
						
							| 240 | 239 239 | jca |  |-  ( ph -> ( ( 0 ... B ) e. _V /\ ( 0 ... B ) e. _V ) ) | 
						
							| 241 |  | xpexg |  |-  ( ( ( 0 ... B ) e. _V /\ ( 0 ... B ) e. _V ) -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. _V ) | 
						
							| 242 | 240 241 | syl |  |-  ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) e. _V ) | 
						
							| 243 | 242 | mptexd |  |-  ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) e. _V ) | 
						
							| 244 | 120 | adantr |  |-  ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> E Fn ( NN0 X. NN0 ) ) | 
						
							| 245 | 110 | sselda |  |-  ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> w e. ( NN0 X. NN0 ) ) | 
						
							| 246 |  | simpr |  |-  ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) | 
						
							| 247 | 244 245 246 | fnfvimad |  |-  ( ( ph /\ w e. ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> ( E ` w ) e. ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 248 |  | eqid |  |-  ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) | 
						
							| 249 | 247 248 | fmptd |  |-  ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 250 | 119 110 | feqresmpt |  |-  ( ph -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) ) | 
						
							| 251 | 250 | feq1d |  |-  ( ph -> ( ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 252 | 249 251 | mpbird |  |-  ( ph -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 253 |  | f1resf1 |  |-  ( ( E : ( NN0 X. NN0 ) -1-1-> NN /\ ( ( 0 ... B ) X. ( 0 ... B ) ) C_ ( NN0 X. NN0 ) /\ ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) --> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 254 | 117 110 252 253 | syl3anc |  |-  ( ph -> ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 255 |  | eqidd |  |-  ( ph -> ( ( 0 ... B ) X. ( 0 ... B ) ) = ( ( 0 ... B ) X. ( 0 ... B ) ) ) | 
						
							| 256 |  | eqidd |  |-  ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 257 | 250 255 256 | f1eq123d |  |-  ( ph -> ( ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 258 | 254 257 | mpbid |  |-  ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 259 |  | df-ima |  |-  ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ran ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) | 
						
							| 260 | 259 | a1i |  |-  ( ph -> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ran ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 261 | 250 | rneqd |  |-  ( ph -> ran ( E |` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) ) | 
						
							| 262 | 260 261 | eqtr2d |  |-  ( ph -> ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 263 | 258 262 | jca |  |-  ( ph -> ( ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) /\ ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 264 |  | dff1o5 |  |-  ( ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) /\ ran ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) = ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 265 | 263 264 | sylibr |  |-  ( ph -> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 266 |  | f1oeq1 |  |-  ( u = ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) -> ( u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) <-> ( w e. ( ( 0 ... B ) X. ( 0 ... B ) ) |-> ( E ` w ) ) : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 267 | 243 265 266 | spcedv |  |-  ( ph -> E. u u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) | 
						
							| 268 |  | hasheqf1oi |  |-  ( ( ( 0 ... B ) X. ( 0 ... B ) ) e. _V -> ( E. u u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) ) | 
						
							| 269 | 242 268 | syl |  |-  ( ph -> ( E. u u : ( ( 0 ... B ) X. ( 0 ... B ) ) -1-1-onto-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) ) | 
						
							| 270 | 267 269 | mpd |  |-  ( ph -> ( # ` ( ( 0 ... B ) X. ( 0 ... B ) ) ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 271 | 238 270 | breqtrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 272 | 125 | fveq2d |  |-  ( ph -> ( # ` C ) = ( # ` ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) ) ) | 
						
							| 273 | 271 272 | breqtrrd |  |-  ( ph -> ( # ` ( L " ( E " ( NN0 X. NN0 ) ) ) ) < ( # ` C ) ) | 
						
							| 274 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 275 |  | eqid |  |-  ( Base ` ( Z/nZ ` R ) ) = ( Base ` ( Z/nZ ` R ) ) | 
						
							| 276 | 274 275 | rhmf |  |-  ( L e. ( ZZring RingHom ( Z/nZ ` R ) ) -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 277 | 198 276 | syl |  |-  ( ph -> L : ZZ --> ( Base ` ( Z/nZ ` R ) ) ) | 
						
							| 278 | 277 | ffnd |  |-  ( ph -> L Fn ZZ ) | 
						
							| 279 | 278 | adantr |  |-  ( ( ph /\ t e. C ) -> L Fn ZZ ) | 
						
							| 280 |  | resss |  |-  ( E |` ( NN0 X. NN0 ) ) C_ E | 
						
							| 281 | 280 | a1i |  |-  ( ph -> ( E |` ( NN0 X. NN0 ) ) C_ E ) | 
						
							| 282 |  | rnss |  |-  ( ( E |` ( NN0 X. NN0 ) ) C_ E -> ran ( E |` ( NN0 X. NN0 ) ) C_ ran E ) | 
						
							| 283 | 281 282 | syl |  |-  ( ph -> ran ( E |` ( NN0 X. NN0 ) ) C_ ran E ) | 
						
							| 284 |  | df-ima |  |-  ( E " ( NN0 X. NN0 ) ) = ran ( E |` ( NN0 X. NN0 ) ) | 
						
							| 285 | 284 | a1i |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) = ran ( E |` ( NN0 X. NN0 ) ) ) | 
						
							| 286 | 285 | sseq1d |  |-  ( ph -> ( ( E " ( NN0 X. NN0 ) ) C_ ran E <-> ran ( E |` ( NN0 X. NN0 ) ) C_ ran E ) ) | 
						
							| 287 | 283 286 | mpbird |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ran E ) | 
						
							| 288 |  | frn |  |-  ( E : ( NN0 X. NN0 ) --> NN -> ran E C_ NN ) | 
						
							| 289 | 119 288 | syl |  |-  ( ph -> ran E C_ NN ) | 
						
							| 290 | 287 289 | sstrd |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ NN ) | 
						
							| 291 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 292 | 291 | a1i |  |-  ( ph -> NN C_ ZZ ) | 
						
							| 293 | 290 292 | sstrd |  |-  ( ph -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) | 
						
							| 294 | 293 | adantr |  |-  ( ( ph /\ t e. C ) -> ( E " ( NN0 X. NN0 ) ) C_ ZZ ) | 
						
							| 295 | 125 | sseq1d |  |-  ( ph -> ( C C_ ( E " ( NN0 X. NN0 ) ) <-> ( E " ( ( 0 ... B ) X. ( 0 ... B ) ) ) C_ ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 296 | 112 295 | mpbird |  |-  ( ph -> C C_ ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 297 | 296 | sseld |  |-  ( ph -> ( t e. C -> t e. ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 298 | 297 | imp |  |-  ( ( ph /\ t e. C ) -> t e. ( E " ( NN0 X. NN0 ) ) ) | 
						
							| 299 |  | fnfvima |  |-  ( ( L Fn ZZ /\ ( E " ( NN0 X. NN0 ) ) C_ ZZ /\ t e. ( E " ( NN0 X. NN0 ) ) ) -> ( L ` t ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 300 | 279 294 298 299 | syl3anc |  |-  ( ( ph /\ t e. C ) -> ( L ` t ) e. ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 301 |  | eqid |  |-  ( t e. C |-> ( L ` t ) ) = ( t e. C |-> ( L ` t ) ) | 
						
							| 302 | 300 301 | fmptd |  |-  ( ph -> ( t e. C |-> ( L ` t ) ) : C --> ( L " ( E " ( NN0 X. NN0 ) ) ) ) | 
						
							| 303 |  | nnssre |  |-  NN C_ RR | 
						
							| 304 | 303 | a1i |  |-  ( ph -> NN C_ RR ) | 
						
							| 305 | 127 304 | sstrd |  |-  ( ph -> C C_ RR ) | 
						
							| 306 | 192 202 273 302 305 | hashnexinjle |  |-  ( ph -> E. b e. C E. c e. C ( ( ( t e. C |-> ( L ` t ) ) ` b ) = ( ( t e. C |-> ( L ` t ) ) ` c ) /\ b < c ) ) | 
						
							| 307 | 185 306 | reximddv2 |  |-  ( ph -> E. b e. C E. c e. C ( b < c /\ E. d e. NN c = ( b + ( d x. R ) ) ) ) | 
						
							| 308 | 51 307 | r19.29vva |  |-  ( ph -> ( # ` ( H " ( NN0 ^m ( 0 ... A ) ) ) ) <_ ( N ^ B ) ) |