| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltp1d.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
divgt0d.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
lemul1ad.3 |
|- ( ph -> C e. RR ) |
| 4 |
|
ltmul12ad.3 |
|- ( ph -> D e. RR ) |
| 5 |
|
ltmul12ad.4 |
|- ( ph -> 0 <_ A ) |
| 6 |
|
ltmul12ad.5 |
|- ( ph -> A < B ) |
| 7 |
|
ltmul12ad.6 |
|- ( ph -> 0 <_ C ) |
| 8 |
|
ltmul12ad.7 |
|- ( ph -> C < D ) |
| 9 |
1 2
|
jca |
|- ( ph -> ( A e. RR /\ B e. RR ) ) |
| 10 |
5 6
|
jca |
|- ( ph -> ( 0 <_ A /\ A < B ) ) |
| 11 |
3 4
|
jca |
|- ( ph -> ( C e. RR /\ D e. RR ) ) |
| 12 |
7 8
|
jca |
|- ( ph -> ( 0 <_ C /\ C < D ) ) |
| 13 |
|
ltmul12a |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |
| 14 |
9 10 11 12 13
|
syl22anc |
|- ( ph -> ( A x. C ) < ( B x. D ) ) |