Metamath Proof Explorer


Theorem ltmul12ad

Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φA
divgt0d.2 φB
lemul1ad.3 φC
ltmul12ad.3 φD
ltmul12ad.4 φ0A
ltmul12ad.5 φA<B
ltmul12ad.6 φ0C
ltmul12ad.7 φC<D
Assertion ltmul12ad φAC<BD

Proof

Step Hyp Ref Expression
1 ltp1d.1 φA
2 divgt0d.2 φB
3 lemul1ad.3 φC
4 ltmul12ad.3 φD
5 ltmul12ad.4 φ0A
6 ltmul12ad.5 φA<B
7 ltmul12ad.6 φ0C
8 ltmul12ad.7 φC<D
9 1 2 jca φAB
10 5 6 jca φ0AA<B
11 3 4 jca φCD
12 7 8 jca φ0CC<D
13 ltmul12a AB0AA<BCD0CC<DAC<BD
14 9 10 11 12 13 syl22anc φAC<BD