| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2p2.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | aks6d1c2p2.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | aks6d1c2p2.3 |  |-  ( ph -> P || N ) | 
						
							| 4 |  | aks6d1c2p2.4 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 5 |  | aks6d1c2p2.5 |  |-  ( ph -> Q e. Prime ) | 
						
							| 6 |  | aks6d1c2p2.6 |  |-  ( ph -> Q || N ) | 
						
							| 7 |  | aks6d1c2p2.7 |  |-  ( ph -> P =/= Q ) | 
						
							| 8 | 1 2 3 4 | aks6d1c2p1 |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) | 
						
							| 9 |  | neneq |  |-  ( b =/= d -> -. b = d ) | 
						
							| 10 | 9 | orcd |  |-  ( b =/= d -> ( -. b = d \/ -. a = c ) ) | 
						
							| 11 |  | simpr |  |-  ( ( b = d /\ a =/= c ) -> a =/= c ) | 
						
							| 12 | 11 | neneqd |  |-  ( ( b = d /\ a =/= c ) -> -. a = c ) | 
						
							| 13 | 12 | olcd |  |-  ( ( b = d /\ a =/= c ) -> ( -. b = d \/ -. a = c ) ) | 
						
							| 14 | 10 13 | jaoi |  |-  ( ( b =/= d \/ ( b = d /\ a =/= c ) ) -> ( -. b = d \/ -. a = c ) ) | 
						
							| 15 |  | neqne |  |-  ( -. b = d -> b =/= d ) | 
						
							| 16 | 15 | orcd |  |-  ( -. b = d -> ( b =/= d \/ ( b = d /\ a =/= c ) ) ) | 
						
							| 17 |  | neqne |  |-  ( -. a = c -> a =/= c ) | 
						
							| 18 | 17 | anim1ci |  |-  ( ( -. a = c /\ b = d ) -> ( b = d /\ a =/= c ) ) | 
						
							| 19 | 18 | olcd |  |-  ( ( -. a = c /\ b = d ) -> ( b =/= d \/ ( b = d /\ a =/= c ) ) ) | 
						
							| 20 | 16 | adantl |  |-  ( ( -. a = c /\ -. b = d ) -> ( b =/= d \/ ( b = d /\ a =/= c ) ) ) | 
						
							| 21 | 19 20 | pm2.61dan |  |-  ( -. a = c -> ( b =/= d \/ ( b = d /\ a =/= c ) ) ) | 
						
							| 22 | 16 21 | jaoi |  |-  ( ( -. b = d \/ -. a = c ) -> ( b =/= d \/ ( b = d /\ a =/= c ) ) ) | 
						
							| 23 | 14 22 | impbii |  |-  ( ( b =/= d \/ ( b = d /\ a =/= c ) ) <-> ( -. b = d \/ -. a = c ) ) | 
						
							| 24 |  | orcom |  |-  ( ( -. b = d \/ -. a = c ) <-> ( -. a = c \/ -. b = d ) ) | 
						
							| 25 | 23 24 | bitri |  |-  ( ( b =/= d \/ ( b = d /\ a =/= c ) ) <-> ( -. a = c \/ -. b = d ) ) | 
						
							| 26 |  | ianor |  |-  ( -. ( a = c /\ b = d ) <-> ( -. a = c \/ -. b = d ) ) | 
						
							| 27 | 26 | bicomi |  |-  ( ( -. a = c \/ -. b = d ) <-> -. ( a = c /\ b = d ) ) | 
						
							| 28 | 25 27 | bitri |  |-  ( ( b =/= d \/ ( b = d /\ a =/= c ) ) <-> -. ( a = c /\ b = d ) ) | 
						
							| 29 | 5 | ad5antr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> Q e. Prime ) | 
						
							| 30 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) /\ p = Q ) -> p = Q ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) /\ p = Q ) -> ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) ) | 
						
							| 32 | 30 | oveq1d |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) /\ p = Q ) -> ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) = ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 33 | 31 32 | neeq12d |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) /\ p = Q ) -> ( ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 34 |  | 0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> 0 e. CC ) | 
						
							| 35 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 36 | 2 35 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 37 | 1 36 | jca |  |-  ( ph -> ( N e. NN /\ P e. NN ) ) | 
						
							| 38 |  | nndivdvds |  |-  ( ( N e. NN /\ P e. NN ) -> ( P || N <-> ( N / P ) e. NN ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> ( P || N <-> ( N / P ) e. NN ) ) | 
						
							| 40 | 3 39 | mpbid |  |-  ( ph -> ( N / P ) e. NN ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ a e. NN0 ) -> ( N / P ) e. NN ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> ( N / P ) e. NN ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( N / P ) e. NN ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( N / P ) e. NN ) | 
						
							| 45 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> b e. NN0 ) | 
						
							| 46 | 44 45 | nnexpcld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( N / P ) ^ b ) e. NN ) | 
						
							| 47 | 29 46 | pccld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ b ) ) e. NN0 ) | 
						
							| 48 | 47 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ b ) ) e. CC ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> d e. NN0 ) | 
						
							| 50 | 44 49 | nnexpcld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( N / P ) ^ d ) e. NN ) | 
						
							| 51 | 29 50 | pccld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ d ) ) e. NN0 ) | 
						
							| 52 | 51 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ d ) ) e. CC ) | 
						
							| 53 |  | simpr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> b =/= d ) | 
						
							| 54 | 45 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> b e. CC ) | 
						
							| 55 | 49 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> d e. CC ) | 
						
							| 56 | 29 44 | pccld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( N / P ) ) e. NN0 ) | 
						
							| 57 | 56 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( N / P ) ) e. CC ) | 
						
							| 58 |  | simp-5l |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ph ) | 
						
							| 59 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 60 | 36 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 61 | 36 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 62 | 59 60 61 | divcan2d |  |-  ( ph -> ( P x. ( N / P ) ) = N ) | 
						
							| 63 | 62 | eqcomd |  |-  ( ph -> N = ( P x. ( N / P ) ) ) | 
						
							| 64 | 63 | breq2d |  |-  ( ph -> ( Q || N <-> Q || ( P x. ( N / P ) ) ) ) | 
						
							| 65 | 6 64 | mpbid |  |-  ( ph -> Q || ( P x. ( N / P ) ) ) | 
						
							| 66 | 36 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 67 | 40 | nnzd |  |-  ( ph -> ( N / P ) e. ZZ ) | 
						
							| 68 |  | euclemma |  |-  ( ( Q e. Prime /\ P e. ZZ /\ ( N / P ) e. ZZ ) -> ( Q || ( P x. ( N / P ) ) <-> ( Q || P \/ Q || ( N / P ) ) ) ) | 
						
							| 69 | 5 66 67 68 | syl3anc |  |-  ( ph -> ( Q || ( P x. ( N / P ) ) <-> ( Q || P \/ Q || ( N / P ) ) ) ) | 
						
							| 70 | 69 | biimpd |  |-  ( ph -> ( Q || ( P x. ( N / P ) ) -> ( Q || P \/ Q || ( N / P ) ) ) ) | 
						
							| 71 | 65 70 | mpd |  |-  ( ph -> ( Q || P \/ Q || ( N / P ) ) ) | 
						
							| 72 |  | necom |  |-  ( P =/= Q <-> Q =/= P ) | 
						
							| 73 | 72 | imbi2i |  |-  ( ( ph -> P =/= Q ) <-> ( ph -> Q =/= P ) ) | 
						
							| 74 | 7 73 | mpbi |  |-  ( ph -> Q =/= P ) | 
						
							| 75 | 74 | neneqd |  |-  ( ph -> -. Q = P ) | 
						
							| 76 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 77 |  | prmgt1 |  |-  ( Q e. Prime -> 1 < Q ) | 
						
							| 78 | 5 77 | syl |  |-  ( ph -> 1 < Q ) | 
						
							| 79 | 76 78 | ltned |  |-  ( ph -> 1 =/= Q ) | 
						
							| 80 | 79 | necomd |  |-  ( ph -> Q =/= 1 ) | 
						
							| 81 | 80 | neneqd |  |-  ( ph -> -. Q = 1 ) | 
						
							| 82 | 75 81 | jca |  |-  ( ph -> ( -. Q = P /\ -. Q = 1 ) ) | 
						
							| 83 |  | pm4.56 |  |-  ( ( -. Q = P /\ -. Q = 1 ) <-> -. ( Q = P \/ Q = 1 ) ) | 
						
							| 84 | 82 83 | sylib |  |-  ( ph -> -. ( Q = P \/ Q = 1 ) ) | 
						
							| 85 |  | prmnn |  |-  ( Q e. Prime -> Q e. NN ) | 
						
							| 86 | 5 85 | syl |  |-  ( ph -> Q e. NN ) | 
						
							| 87 |  | dvdsprime |  |-  ( ( P e. Prime /\ Q e. NN ) -> ( Q || P <-> ( Q = P \/ Q = 1 ) ) ) | 
						
							| 88 | 2 86 87 | syl2anc |  |-  ( ph -> ( Q || P <-> ( Q = P \/ Q = 1 ) ) ) | 
						
							| 89 | 84 88 | mtbird |  |-  ( ph -> -. Q || P ) | 
						
							| 90 | 71 89 | orcnd |  |-  ( ph -> Q || ( N / P ) ) | 
						
							| 91 | 5 40 | jca |  |-  ( ph -> ( Q e. Prime /\ ( N / P ) e. NN ) ) | 
						
							| 92 |  | pcelnn |  |-  ( ( Q e. Prime /\ ( N / P ) e. NN ) -> ( ( Q pCnt ( N / P ) ) e. NN <-> Q || ( N / P ) ) ) | 
						
							| 93 | 91 92 | syl |  |-  ( ph -> ( ( Q pCnt ( N / P ) ) e. NN <-> Q || ( N / P ) ) ) | 
						
							| 94 | 90 93 | mpbird |  |-  ( ph -> ( Q pCnt ( N / P ) ) e. NN ) | 
						
							| 95 | 58 94 | syl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( N / P ) ) e. NN ) | 
						
							| 96 | 95 | nnne0d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( N / P ) ) =/= 0 ) | 
						
							| 97 | 54 55 57 96 | mulcan2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( b x. ( Q pCnt ( N / P ) ) ) = ( d x. ( Q pCnt ( N / P ) ) ) <-> b = d ) ) | 
						
							| 98 | 97 | necon3bid |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( b x. ( Q pCnt ( N / P ) ) ) =/= ( d x. ( Q pCnt ( N / P ) ) ) <-> b =/= d ) ) | 
						
							| 99 | 53 98 | mpbird |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( b x. ( Q pCnt ( N / P ) ) ) =/= ( d x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 100 | 5 | ad4antr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> Q e. Prime ) | 
						
							| 101 |  | nnq |  |-  ( ( N / P ) e. NN -> ( N / P ) e. QQ ) | 
						
							| 102 | 43 101 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( N / P ) e. QQ ) | 
						
							| 103 | 1 | ad4antr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> N e. NN ) | 
						
							| 104 | 103 | nncnd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> N e. CC ) | 
						
							| 105 | 36 | adantr |  |-  ( ( ph /\ a e. NN0 ) -> P e. NN ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> P e. NN ) | 
						
							| 107 | 106 | ad2antrr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> P e. NN ) | 
						
							| 108 | 107 | nncnd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> P e. CC ) | 
						
							| 109 | 103 | nnne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> N =/= 0 ) | 
						
							| 110 | 107 | nnne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> P =/= 0 ) | 
						
							| 111 | 104 108 109 110 | divne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( N / P ) =/= 0 ) | 
						
							| 112 | 102 111 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) e. QQ /\ ( N / P ) =/= 0 ) ) | 
						
							| 113 |  | simpllr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> b e. NN0 ) | 
						
							| 114 | 113 | nn0zd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> b e. ZZ ) | 
						
							| 115 | 100 112 114 | 3jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q e. Prime /\ ( ( N / P ) e. QQ /\ ( N / P ) =/= 0 ) /\ b e. ZZ ) ) | 
						
							| 116 |  | pcexp |  |-  ( ( Q e. Prime /\ ( ( N / P ) e. QQ /\ ( N / P ) =/= 0 ) /\ b e. ZZ ) -> ( Q pCnt ( ( N / P ) ^ b ) ) = ( b x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 117 | 115 116 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q pCnt ( ( N / P ) ^ b ) ) = ( b x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ b ) ) = ( b x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 119 | 118 | eqcomd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( b x. ( Q pCnt ( N / P ) ) ) = ( Q pCnt ( ( N / P ) ^ b ) ) ) | 
						
							| 120 |  | simpr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> d e. NN0 ) | 
						
							| 121 | 120 | nn0zd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> d e. ZZ ) | 
						
							| 122 | 100 112 121 | 3jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q e. Prime /\ ( ( N / P ) e. QQ /\ ( N / P ) =/= 0 ) /\ d e. ZZ ) ) | 
						
							| 123 |  | pcexp |  |-  ( ( Q e. Prime /\ ( ( N / P ) e. QQ /\ ( N / P ) =/= 0 ) /\ d e. ZZ ) -> ( Q pCnt ( ( N / P ) ^ d ) ) = ( d x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 124 | 122 123 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q pCnt ( ( N / P ) ^ d ) ) = ( d x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 125 | 124 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ d ) ) = ( d x. ( Q pCnt ( N / P ) ) ) ) | 
						
							| 126 | 125 | eqcomd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( d x. ( Q pCnt ( N / P ) ) ) = ( Q pCnt ( ( N / P ) ^ d ) ) ) | 
						
							| 127 | 99 119 126 | 3netr3d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( N / P ) ^ b ) ) =/= ( Q pCnt ( ( N / P ) ^ d ) ) ) | 
						
							| 128 | 34 48 52 127 | addneintrd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( 0 + ( Q pCnt ( ( N / P ) ^ b ) ) ) =/= ( 0 + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 129 | 75 | ad4antr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> -. Q = P ) | 
						
							| 130 | 2 | ad4antr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> P e. Prime ) | 
						
							| 131 |  | simp-4r |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> a e. NN0 ) | 
						
							| 132 |  | prmdvdsexpr |  |-  ( ( Q e. Prime /\ P e. Prime /\ a e. NN0 ) -> ( Q || ( P ^ a ) -> Q = P ) ) | 
						
							| 133 | 100 130 131 132 | syl3anc |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q || ( P ^ a ) -> Q = P ) ) | 
						
							| 134 | 133 | con3d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( -. Q = P -> -. Q || ( P ^ a ) ) ) | 
						
							| 135 | 129 134 | mpd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> -. Q || ( P ^ a ) ) | 
						
							| 136 |  | simplr |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> a e. NN0 ) | 
						
							| 137 | 106 136 | nnexpcld |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> ( P ^ a ) e. NN ) | 
						
							| 138 | 137 | ad2antrr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P ^ a ) e. NN ) | 
						
							| 139 | 100 138 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q e. Prime /\ ( P ^ a ) e. NN ) ) | 
						
							| 140 |  | pceq0 |  |-  ( ( Q e. Prime /\ ( P ^ a ) e. NN ) -> ( ( Q pCnt ( P ^ a ) ) = 0 <-> -. Q || ( P ^ a ) ) ) | 
						
							| 141 | 139 140 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( Q pCnt ( P ^ a ) ) = 0 <-> -. Q || ( P ^ a ) ) ) | 
						
							| 142 | 135 141 | mpbird |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q pCnt ( P ^ a ) ) = 0 ) | 
						
							| 143 | 142 | eqcomd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> 0 = ( Q pCnt ( P ^ a ) ) ) | 
						
							| 144 | 143 | oveq1d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( 0 + ( Q pCnt ( ( N / P ) ^ b ) ) ) = ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 145 | 144 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( 0 + ( Q pCnt ( ( N / P ) ^ b ) ) ) = ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 146 |  | simplr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> c e. NN0 ) | 
						
							| 147 |  | prmdvdsexpr |  |-  ( ( Q e. Prime /\ P e. Prime /\ c e. NN0 ) -> ( Q || ( P ^ c ) -> Q = P ) ) | 
						
							| 148 | 100 130 146 147 | syl3anc |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q || ( P ^ c ) -> Q = P ) ) | 
						
							| 149 | 129 148 | mtod |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> -. Q || ( P ^ c ) ) | 
						
							| 150 | 107 146 | nnexpcld |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P ^ c ) e. NN ) | 
						
							| 151 | 100 150 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q e. Prime /\ ( P ^ c ) e. NN ) ) | 
						
							| 152 |  | pceq0 |  |-  ( ( Q e. Prime /\ ( P ^ c ) e. NN ) -> ( ( Q pCnt ( P ^ c ) ) = 0 <-> -. Q || ( P ^ c ) ) ) | 
						
							| 153 | 151 152 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( Q pCnt ( P ^ c ) ) = 0 <-> -. Q || ( P ^ c ) ) ) | 
						
							| 154 | 149 153 | mpbird |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q pCnt ( P ^ c ) ) = 0 ) | 
						
							| 155 | 154 | eqcomd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> 0 = ( Q pCnt ( P ^ c ) ) ) | 
						
							| 156 | 155 | oveq1d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( 0 + ( Q pCnt ( ( N / P ) ^ d ) ) ) = ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( 0 + ( Q pCnt ( ( N / P ) ^ d ) ) ) = ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 158 | 128 145 157 | 3netr3d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) =/= ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 159 | 107 | nnzd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> P e. ZZ ) | 
						
							| 160 | 159 131 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P e. ZZ /\ a e. NN0 ) ) | 
						
							| 161 |  | zexpcl |  |-  ( ( P e. ZZ /\ a e. NN0 ) -> ( P ^ a ) e. ZZ ) | 
						
							| 162 | 160 161 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P ^ a ) e. ZZ ) | 
						
							| 163 | 131 | nn0zd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> a e. ZZ ) | 
						
							| 164 | 108 110 163 | expne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P ^ a ) =/= 0 ) | 
						
							| 165 | 162 164 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P ^ a ) e. ZZ /\ ( P ^ a ) =/= 0 ) ) | 
						
							| 166 | 43 | nnzd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( N / P ) e. ZZ ) | 
						
							| 167 | 166 113 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) e. ZZ /\ b e. NN0 ) ) | 
						
							| 168 |  | zexpcl |  |-  ( ( ( N / P ) e. ZZ /\ b e. NN0 ) -> ( ( N / P ) ^ b ) e. ZZ ) | 
						
							| 169 | 167 168 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) ^ b ) e. ZZ ) | 
						
							| 170 | 104 108 110 | divcld |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( N / P ) e. CC ) | 
						
							| 171 | 170 111 114 | expne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) ^ b ) =/= 0 ) | 
						
							| 172 | 169 171 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( N / P ) ^ b ) e. ZZ /\ ( ( N / P ) ^ b ) =/= 0 ) ) | 
						
							| 173 | 100 165 172 | 3jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q e. Prime /\ ( ( P ^ a ) e. ZZ /\ ( P ^ a ) =/= 0 ) /\ ( ( ( N / P ) ^ b ) e. ZZ /\ ( ( N / P ) ^ b ) =/= 0 ) ) ) | 
						
							| 174 |  | pcmul |  |-  ( ( Q e. Prime /\ ( ( P ^ a ) e. ZZ /\ ( P ^ a ) =/= 0 ) /\ ( ( ( N / P ) ^ b ) e. ZZ /\ ( ( N / P ) ^ b ) =/= 0 ) ) -> ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 175 | 173 174 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 176 | 175 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 177 | 176 | eqcomd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( Q pCnt ( P ^ a ) ) + ( Q pCnt ( ( N / P ) ^ b ) ) ) = ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) ) | 
						
							| 178 | 150 | nnzd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P ^ c ) e. ZZ ) | 
						
							| 179 | 150 | nnne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P ^ c ) =/= 0 ) | 
						
							| 180 | 178 179 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P ^ c ) e. ZZ /\ ( P ^ c ) =/= 0 ) ) | 
						
							| 181 | 43 120 | nnexpcld |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) ^ d ) e. NN ) | 
						
							| 182 | 181 | nnzd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) ^ d ) e. ZZ ) | 
						
							| 183 | 181 | nnne0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( N / P ) ^ d ) =/= 0 ) | 
						
							| 184 | 182 183 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( N / P ) ^ d ) e. ZZ /\ ( ( N / P ) ^ d ) =/= 0 ) ) | 
						
							| 185 | 100 180 184 | 3jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q e. Prime /\ ( ( P ^ c ) e. ZZ /\ ( P ^ c ) =/= 0 ) /\ ( ( ( N / P ) ^ d ) e. ZZ /\ ( ( N / P ) ^ d ) =/= 0 ) ) ) | 
						
							| 186 |  | pcmul |  |-  ( ( Q e. Prime /\ ( ( P ^ c ) e. ZZ /\ ( P ^ c ) =/= 0 ) /\ ( ( ( N / P ) ^ d ) e. ZZ /\ ( ( N / P ) ^ d ) =/= 0 ) ) -> ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) = ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 187 | 185 186 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) = ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) = ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 189 | 188 | eqcomd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( ( Q pCnt ( P ^ c ) ) + ( Q pCnt ( ( N / P ) ^ d ) ) ) = ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 190 | 158 177 189 | 3netr3d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> ( Q pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( Q pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 191 | 29 33 190 | rspcedvd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ b =/= d ) -> E. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 192 | 2 | ad5antr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> P e. Prime ) | 
						
							| 193 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) /\ p = P ) -> p = P ) | 
						
							| 194 | 193 | oveq1d |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) /\ p = P ) -> ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) ) | 
						
							| 195 | 193 | oveq1d |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) /\ p = P ) -> ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) = ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 196 | 194 195 | neeq12d |  |-  ( ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) /\ p = P ) -> ( ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 197 | 130 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> P e. Prime ) | 
						
							| 198 | 197 35 | syl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> P e. NN ) | 
						
							| 199 |  | simp-5r |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> a e. NN0 ) | 
						
							| 200 | 198 199 | nnexpcld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P ^ a ) e. NN ) | 
						
							| 201 | 197 200 | pccld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ a ) ) e. NN0 ) | 
						
							| 202 | 201 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ a ) ) e. CC ) | 
						
							| 203 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> c e. NN0 ) | 
						
							| 204 | 198 203 | nnexpcld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P ^ c ) e. NN ) | 
						
							| 205 | 197 204 | pccld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ c ) ) e. NN0 ) | 
						
							| 206 | 205 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ c ) ) e. CC ) | 
						
							| 207 | 43 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( N / P ) e. NN ) | 
						
							| 208 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> b e. NN0 ) | 
						
							| 209 | 207 208 | nnexpcld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( N / P ) ^ b ) e. NN ) | 
						
							| 210 | 197 209 | pccld |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( ( N / P ) ^ b ) ) e. NN0 ) | 
						
							| 211 | 210 | nn0cnd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( ( N / P ) ^ b ) ) e. CC ) | 
						
							| 212 | 11 | adantl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> a =/= c ) | 
						
							| 213 | 197 199 | jca |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P e. Prime /\ a e. NN0 ) ) | 
						
							| 214 |  | pcidlem |  |-  ( ( P e. Prime /\ a e. NN0 ) -> ( P pCnt ( P ^ a ) ) = a ) | 
						
							| 215 | 213 214 | syl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ a ) ) = a ) | 
						
							| 216 | 215 | eqcomd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> a = ( P pCnt ( P ^ a ) ) ) | 
						
							| 217 | 197 203 | jca |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P e. Prime /\ c e. NN0 ) ) | 
						
							| 218 |  | pcidlem |  |-  ( ( P e. Prime /\ c e. NN0 ) -> ( P pCnt ( P ^ c ) ) = c ) | 
						
							| 219 | 217 218 | syl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ c ) ) = c ) | 
						
							| 220 | 219 | eqcomd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> c = ( P pCnt ( P ^ c ) ) ) | 
						
							| 221 | 212 216 220 | 3netr3d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( P ^ a ) ) =/= ( P pCnt ( P ^ c ) ) ) | 
						
							| 222 | 202 206 211 221 | addneintr2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) =/= ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 223 |  | eqidd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) = ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 224 |  | simprl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> b = d ) | 
						
							| 225 | 224 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( N / P ) ^ b ) = ( ( N / P ) ^ d ) ) | 
						
							| 226 | 225 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( ( N / P ) ^ b ) ) = ( P pCnt ( ( N / P ) ^ d ) ) ) | 
						
							| 227 | 226 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) = ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 228 | 222 223 227 | 3netr3d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) =/= ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 229 | 130 165 172 | 3jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P e. Prime /\ ( ( P ^ a ) e. ZZ /\ ( P ^ a ) =/= 0 ) /\ ( ( ( N / P ) ^ b ) e. ZZ /\ ( ( N / P ) ^ b ) =/= 0 ) ) ) | 
						
							| 230 |  | pcmul |  |-  ( ( P e. Prime /\ ( ( P ^ a ) e. ZZ /\ ( P ^ a ) =/= 0 ) /\ ( ( ( N / P ) ^ b ) e. ZZ /\ ( ( N / P ) ^ b ) =/= 0 ) ) -> ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 231 | 229 230 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) ) | 
						
							| 232 | 231 | eqcomd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) = ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) ) | 
						
							| 233 | 232 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( P pCnt ( P ^ a ) ) + ( P pCnt ( ( N / P ) ^ b ) ) ) = ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) ) | 
						
							| 234 | 130 180 184 | 3jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( P e. Prime /\ ( ( P ^ c ) e. ZZ /\ ( P ^ c ) =/= 0 ) /\ ( ( ( N / P ) ^ d ) e. ZZ /\ ( ( N / P ) ^ d ) =/= 0 ) ) ) | 
						
							| 235 |  | pcmul |  |-  ( ( P e. Prime /\ ( ( P ^ c ) e. ZZ /\ ( P ^ c ) =/= 0 ) /\ ( ( ( N / P ) ^ d ) e. ZZ /\ ( ( N / P ) ^ d ) =/= 0 ) ) -> ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) = ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ d ) ) ) ) | 
						
							| 236 | 235 | eqcomd |  |-  ( ( P e. Prime /\ ( ( P ^ c ) e. ZZ /\ ( P ^ c ) =/= 0 ) /\ ( ( ( N / P ) ^ d ) e. ZZ /\ ( ( N / P ) ^ d ) =/= 0 ) ) -> ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ d ) ) ) = ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 237 | 234 236 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ d ) ) ) = ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 238 | 237 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( ( P pCnt ( P ^ c ) ) + ( P pCnt ( ( N / P ) ^ d ) ) ) = ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 239 | 228 233 238 | 3netr3d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> ( P pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( P pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 240 | 192 196 239 | rspcedvd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b = d /\ a =/= c ) ) -> E. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 241 | 191 240 | jaodan |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b =/= d \/ ( b = d /\ a =/= c ) ) ) -> E. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 242 |  | biidd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 243 | 242 | necon3abid |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> -. ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 244 |  | simpr |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> b e. NN0 ) | 
						
							| 245 | 42 244 | nnexpcld |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> ( ( N / P ) ^ b ) e. NN ) | 
						
							| 246 | 137 245 | nnmulcld |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) e. NN ) | 
						
							| 247 | 246 | adantr |  |-  ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) -> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) e. NN ) | 
						
							| 248 | 247 | adantr |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) e. NN ) | 
						
							| 249 | 248 | nnnn0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) e. NN0 ) | 
						
							| 250 | 150 181 | nnmulcld |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) e. NN ) | 
						
							| 251 | 250 | nnnn0d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) e. NN0 ) | 
						
							| 252 | 249 251 | jca |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) e. NN0 /\ ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) e. NN0 ) ) | 
						
							| 253 |  | pc11 |  |-  ( ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) e. NN0 /\ ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 254 | 252 253 | syl |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 255 | 254 | notbid |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( -. ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> -. A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 256 | 243 255 | bitrd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> -. A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 257 |  | rexnal |  |-  ( E. p e. Prime -. ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> -. A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 258 | 257 | bicomi |  |-  ( -. A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> E. p e. Prime -. ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 259 | 258 | a1i |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( -. A. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> E. p e. Prime -. ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 260 | 256 259 | bitrd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> E. p e. Prime -. ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 261 |  | biidd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 262 | 261 | necon3bbid |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( -. ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 263 | 262 | rexbidv |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( E. p e. Prime -. ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) = ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) <-> E. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 264 | 260 263 | bitrd |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> E. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 265 | 264 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b =/= d \/ ( b = d /\ a =/= c ) ) ) -> ( ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) <-> E. p e. Prime ( p pCnt ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) =/= ( p pCnt ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) ) | 
						
							| 266 | 241 265 | mpbird |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( b =/= d \/ ( b = d /\ a =/= c ) ) ) -> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) | 
						
							| 267 | 28 266 | sylan2br |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ -. ( a = c /\ b = d ) ) -> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) | 
						
							| 268 | 4 | a1i |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) ) | 
						
							| 269 |  | simprl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = a /\ l = b ) ) -> k = a ) | 
						
							| 270 | 269 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = a /\ l = b ) ) -> ( P ^ k ) = ( P ^ a ) ) | 
						
							| 271 |  | simprr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = a /\ l = b ) ) -> l = b ) | 
						
							| 272 | 271 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = a /\ l = b ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ b ) ) | 
						
							| 273 | 270 272 | oveq12d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = a /\ l = b ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) | 
						
							| 274 | 268 273 131 113 248 | ovmpod |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( a E b ) = ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) ) | 
						
							| 275 |  | simprl |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = c /\ l = d ) ) -> k = c ) | 
						
							| 276 | 275 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = c /\ l = d ) ) -> ( P ^ k ) = ( P ^ c ) ) | 
						
							| 277 |  | simprr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = c /\ l = d ) ) -> l = d ) | 
						
							| 278 | 277 | oveq2d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = c /\ l = d ) ) -> ( ( N / P ) ^ l ) = ( ( N / P ) ^ d ) ) | 
						
							| 279 | 276 278 | oveq12d |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ ( k = c /\ l = d ) ) -> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) | 
						
							| 280 | 268 279 146 120 250 | ovmpod |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( c E d ) = ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) | 
						
							| 281 | 274 280 | neeq12d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( a E b ) =/= ( c E d ) <-> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 282 | 281 | adantr |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ -. ( a = c /\ b = d ) ) -> ( ( a E b ) =/= ( c E d ) <-> ( ( P ^ a ) x. ( ( N / P ) ^ b ) ) =/= ( ( P ^ c ) x. ( ( N / P ) ^ d ) ) ) ) | 
						
							| 283 | 267 282 | mpbird |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ -. ( a = c /\ b = d ) ) -> ( a E b ) =/= ( c E d ) ) | 
						
							| 284 | 283 | neneqd |  |-  ( ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) /\ -. ( a = c /\ b = d ) ) -> -. ( a E b ) = ( c E d ) ) | 
						
							| 285 | 284 | ex |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( -. ( a = c /\ b = d ) -> -. ( a E b ) = ( c E d ) ) ) | 
						
							| 286 | 285 | con4d |  |-  ( ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) /\ d e. NN0 ) -> ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) | 
						
							| 287 | 286 | ralrimiva |  |-  ( ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) /\ c e. NN0 ) -> A. d e. NN0 ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) | 
						
							| 288 | 287 | ralrimiva |  |-  ( ( ( ph /\ a e. NN0 ) /\ b e. NN0 ) -> A. c e. NN0 A. d e. NN0 ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) | 
						
							| 289 | 288 | ralrimiva |  |-  ( ( ph /\ a e. NN0 ) -> A. b e. NN0 A. c e. NN0 A. d e. NN0 ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) | 
						
							| 290 | 289 | ralrimiva |  |-  ( ph -> A. a e. NN0 A. b e. NN0 A. c e. NN0 A. d e. NN0 ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) | 
						
							| 291 | 8 290 | jca |  |-  ( ph -> ( E : ( NN0 X. NN0 ) --> NN /\ A. a e. NN0 A. b e. NN0 A. c e. NN0 A. d e. NN0 ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) ) | 
						
							| 292 |  | f1opr |  |-  ( E : ( NN0 X. NN0 ) -1-1-> NN <-> ( E : ( NN0 X. NN0 ) --> NN /\ A. a e. NN0 A. b e. NN0 A. c e. NN0 A. d e. NN0 ( ( a E b ) = ( c E d ) -> ( a = c /\ b = d ) ) ) ) | 
						
							| 293 | 291 292 | sylibr |  |-  ( ph -> E : ( NN0 X. NN0 ) -1-1-> NN ) |