Metamath Proof Explorer


Theorem aks6d1c2p2

Description: Injective condition for countability argument assuming that N is not a prime power. (Contributed by metakunt, 7-Jan-2025)

Ref Expression
Hypotheses aks6d1c2p2.1 φ N
aks6d1c2p2.2 φ P
aks6d1c2p2.3 φ P N
aks6d1c2p2.4 E = k 0 , l 0 P k N P l
aks6d1c2p2.5 φ Q
aks6d1c2p2.6 φ Q N
aks6d1c2p2.7 φ P Q
Assertion aks6d1c2p2 φ E : 0 × 0 1-1

Proof

Step Hyp Ref Expression
1 aks6d1c2p2.1 φ N
2 aks6d1c2p2.2 φ P
3 aks6d1c2p2.3 φ P N
4 aks6d1c2p2.4 E = k 0 , l 0 P k N P l
5 aks6d1c2p2.5 φ Q
6 aks6d1c2p2.6 φ Q N
7 aks6d1c2p2.7 φ P Q
8 1 2 3 4 aks6d1c2p1 φ E : 0 × 0
9 neneq b d ¬ b = d
10 9 orcd b d ¬ b = d ¬ a = c
11 simpr b = d a c a c
12 11 neneqd b = d a c ¬ a = c
13 12 olcd b = d a c ¬ b = d ¬ a = c
14 10 13 jaoi b d b = d a c ¬ b = d ¬ a = c
15 neqne ¬ b = d b d
16 15 orcd ¬ b = d b d b = d a c
17 neqne ¬ a = c a c
18 17 anim1ci ¬ a = c b = d b = d a c
19 18 olcd ¬ a = c b = d b d b = d a c
20 16 adantl ¬ a = c ¬ b = d b d b = d a c
21 19 20 pm2.61dan ¬ a = c b d b = d a c
22 16 21 jaoi ¬ b = d ¬ a = c b d b = d a c
23 14 22 impbii b d b = d a c ¬ b = d ¬ a = c
24 orcom ¬ b = d ¬ a = c ¬ a = c ¬ b = d
25 23 24 bitri b d b = d a c ¬ a = c ¬ b = d
26 ianor ¬ a = c b = d ¬ a = c ¬ b = d
27 26 bicomi ¬ a = c ¬ b = d ¬ a = c b = d
28 25 27 bitri b d b = d a c ¬ a = c b = d
29 5 ad5antr φ a 0 b 0 c 0 d 0 b d Q
30 simpr φ a 0 b 0 c 0 d 0 b d p = Q p = Q
31 30 oveq1d φ a 0 b 0 c 0 d 0 b d p = Q p pCnt P a N P b = Q pCnt P a N P b
32 30 oveq1d φ a 0 b 0 c 0 d 0 b d p = Q p pCnt P c N P d = Q pCnt P c N P d
33 31 32 neeq12d φ a 0 b 0 c 0 d 0 b d p = Q p pCnt P a N P b p pCnt P c N P d Q pCnt P a N P b Q pCnt P c N P d
34 0cnd φ a 0 b 0 c 0 d 0 b d 0
35 prmnn P P
36 2 35 syl φ P
37 1 36 jca φ N P
38 nndivdvds N P P N N P
39 37 38 syl φ P N N P
40 3 39 mpbid φ N P
41 40 adantr φ a 0 N P
42 41 adantr φ a 0 b 0 N P
43 42 ad2antrr φ a 0 b 0 c 0 d 0 N P
44 43 adantr φ a 0 b 0 c 0 d 0 b d N P
45 simp-4r φ a 0 b 0 c 0 d 0 b d b 0
46 44 45 nnexpcld φ a 0 b 0 c 0 d 0 b d N P b
47 29 46 pccld φ a 0 b 0 c 0 d 0 b d Q pCnt N P b 0
48 47 nn0cnd φ a 0 b 0 c 0 d 0 b d Q pCnt N P b
49 simplr φ a 0 b 0 c 0 d 0 b d d 0
50 44 49 nnexpcld φ a 0 b 0 c 0 d 0 b d N P d
51 29 50 pccld φ a 0 b 0 c 0 d 0 b d Q pCnt N P d 0
52 51 nn0cnd φ a 0 b 0 c 0 d 0 b d Q pCnt N P d
53 simpr φ a 0 b 0 c 0 d 0 b d b d
54 45 nn0cnd φ a 0 b 0 c 0 d 0 b d b
55 49 nn0cnd φ a 0 b 0 c 0 d 0 b d d
56 29 44 pccld φ a 0 b 0 c 0 d 0 b d Q pCnt N P 0
57 56 nn0cnd φ a 0 b 0 c 0 d 0 b d Q pCnt N P
58 simp-5l φ a 0 b 0 c 0 d 0 b d φ
59 1 nncnd φ N
60 36 nncnd φ P
61 36 nnne0d φ P 0
62 59 60 61 divcan2d φ P N P = N
63 62 eqcomd φ N = P N P
64 63 breq2d φ Q N Q P N P
65 6 64 mpbid φ Q P N P
66 36 nnzd φ P
67 40 nnzd φ N P
68 euclemma Q P N P Q P N P Q P Q N P
69 5 66 67 68 syl3anc φ Q P N P Q P Q N P
70 69 biimpd φ Q P N P Q P Q N P
71 65 70 mpd φ Q P Q N P
72 necom P Q Q P
73 72 imbi2i φ P Q φ Q P
74 7 73 mpbi φ Q P
75 74 neneqd φ ¬ Q = P
76 1red φ 1
77 prmgt1 Q 1 < Q
78 5 77 syl φ 1 < Q
79 76 78 ltned φ 1 Q
80 79 necomd φ Q 1
81 80 neneqd φ ¬ Q = 1
82 75 81 jca φ ¬ Q = P ¬ Q = 1
83 pm4.56 ¬ Q = P ¬ Q = 1 ¬ Q = P Q = 1
84 82 83 sylib φ ¬ Q = P Q = 1
85 prmnn Q Q
86 5 85 syl φ Q
87 dvdsprime P Q Q P Q = P Q = 1
88 2 86 87 syl2anc φ Q P Q = P Q = 1
89 84 88 mtbird φ ¬ Q P
90 71 89 orcnd φ Q N P
91 5 40 jca φ Q N P
92 pcelnn Q N P Q pCnt N P Q N P
93 91 92 syl φ Q pCnt N P Q N P
94 90 93 mpbird φ Q pCnt N P
95 58 94 syl φ a 0 b 0 c 0 d 0 b d Q pCnt N P
96 95 nnne0d φ a 0 b 0 c 0 d 0 b d Q pCnt N P 0
97 54 55 57 96 mulcan2d φ a 0 b 0 c 0 d 0 b d b Q pCnt N P = d Q pCnt N P b = d
98 97 necon3bid φ a 0 b 0 c 0 d 0 b d b Q pCnt N P d Q pCnt N P b d
99 53 98 mpbird φ a 0 b 0 c 0 d 0 b d b Q pCnt N P d Q pCnt N P
100 5 ad4antr φ a 0 b 0 c 0 d 0 Q
101 nnq N P N P
102 43 101 syl φ a 0 b 0 c 0 d 0 N P
103 1 ad4antr φ a 0 b 0 c 0 d 0 N
104 103 nncnd φ a 0 b 0 c 0 d 0 N
105 36 adantr φ a 0 P
106 105 adantr φ a 0 b 0 P
107 106 ad2antrr φ a 0 b 0 c 0 d 0 P
108 107 nncnd φ a 0 b 0 c 0 d 0 P
109 103 nnne0d φ a 0 b 0 c 0 d 0 N 0
110 107 nnne0d φ a 0 b 0 c 0 d 0 P 0
111 104 108 109 110 divne0d φ a 0 b 0 c 0 d 0 N P 0
112 102 111 jca φ a 0 b 0 c 0 d 0 N P N P 0
113 simpllr φ a 0 b 0 c 0 d 0 b 0
114 113 nn0zd φ a 0 b 0 c 0 d 0 b
115 100 112 114 3jca φ a 0 b 0 c 0 d 0 Q N P N P 0 b
116 pcexp Q N P N P 0 b Q pCnt N P b = b Q pCnt N P
117 115 116 syl φ a 0 b 0 c 0 d 0 Q pCnt N P b = b Q pCnt N P
118 117 adantr φ a 0 b 0 c 0 d 0 b d Q pCnt N P b = b Q pCnt N P
119 118 eqcomd φ a 0 b 0 c 0 d 0 b d b Q pCnt N P = Q pCnt N P b
120 simpr φ a 0 b 0 c 0 d 0 d 0
121 120 nn0zd φ a 0 b 0 c 0 d 0 d
122 100 112 121 3jca φ a 0 b 0 c 0 d 0 Q N P N P 0 d
123 pcexp Q N P N P 0 d Q pCnt N P d = d Q pCnt N P
124 122 123 syl φ a 0 b 0 c 0 d 0 Q pCnt N P d = d Q pCnt N P
125 124 adantr φ a 0 b 0 c 0 d 0 b d Q pCnt N P d = d Q pCnt N P
126 125 eqcomd φ a 0 b 0 c 0 d 0 b d d Q pCnt N P = Q pCnt N P d
127 99 119 126 3netr3d φ a 0 b 0 c 0 d 0 b d Q pCnt N P b Q pCnt N P d
128 34 48 52 127 addneintrd φ a 0 b 0 c 0 d 0 b d 0 + Q pCnt N P b 0 + Q pCnt N P d
129 75 ad4antr φ a 0 b 0 c 0 d 0 ¬ Q = P
130 2 ad4antr φ a 0 b 0 c 0 d 0 P
131 simp-4r φ a 0 b 0 c 0 d 0 a 0
132 prmdvdsexpr Q P a 0 Q P a Q = P
133 100 130 131 132 syl3anc φ a 0 b 0 c 0 d 0 Q P a Q = P
134 133 con3d φ a 0 b 0 c 0 d 0 ¬ Q = P ¬ Q P a
135 129 134 mpd φ a 0 b 0 c 0 d 0 ¬ Q P a
136 simplr φ a 0 b 0 a 0
137 106 136 nnexpcld φ a 0 b 0 P a
138 137 ad2antrr φ a 0 b 0 c 0 d 0 P a
139 100 138 jca φ a 0 b 0 c 0 d 0 Q P a
140 pceq0 Q P a Q pCnt P a = 0 ¬ Q P a
141 139 140 syl φ a 0 b 0 c 0 d 0 Q pCnt P a = 0 ¬ Q P a
142 135 141 mpbird φ a 0 b 0 c 0 d 0 Q pCnt P a = 0
143 142 eqcomd φ a 0 b 0 c 0 d 0 0 = Q pCnt P a
144 143 oveq1d φ a 0 b 0 c 0 d 0 0 + Q pCnt N P b = Q pCnt P a + Q pCnt N P b
145 144 adantr φ a 0 b 0 c 0 d 0 b d 0 + Q pCnt N P b = Q pCnt P a + Q pCnt N P b
146 simplr φ a 0 b 0 c 0 d 0 c 0
147 prmdvdsexpr Q P c 0 Q P c Q = P
148 100 130 146 147 syl3anc φ a 0 b 0 c 0 d 0 Q P c Q = P
149 129 148 mtod φ a 0 b 0 c 0 d 0 ¬ Q P c
150 107 146 nnexpcld φ a 0 b 0 c 0 d 0 P c
151 100 150 jca φ a 0 b 0 c 0 d 0 Q P c
152 pceq0 Q P c Q pCnt P c = 0 ¬ Q P c
153 151 152 syl φ a 0 b 0 c 0 d 0 Q pCnt P c = 0 ¬ Q P c
154 149 153 mpbird φ a 0 b 0 c 0 d 0 Q pCnt P c = 0
155 154 eqcomd φ a 0 b 0 c 0 d 0 0 = Q pCnt P c
156 155 oveq1d φ a 0 b 0 c 0 d 0 0 + Q pCnt N P d = Q pCnt P c + Q pCnt N P d
157 156 adantr φ a 0 b 0 c 0 d 0 b d 0 + Q pCnt N P d = Q pCnt P c + Q pCnt N P d
158 128 145 157 3netr3d φ a 0 b 0 c 0 d 0 b d Q pCnt P a + Q pCnt N P b Q pCnt P c + Q pCnt N P d
159 107 nnzd φ a 0 b 0 c 0 d 0 P
160 159 131 jca φ a 0 b 0 c 0 d 0 P a 0
161 zexpcl P a 0 P a
162 160 161 syl φ a 0 b 0 c 0 d 0 P a
163 131 nn0zd φ a 0 b 0 c 0 d 0 a
164 108 110 163 expne0d φ a 0 b 0 c 0 d 0 P a 0
165 162 164 jca φ a 0 b 0 c 0 d 0 P a P a 0
166 43 nnzd φ a 0 b 0 c 0 d 0 N P
167 166 113 jca φ a 0 b 0 c 0 d 0 N P b 0
168 zexpcl N P b 0 N P b
169 167 168 syl φ a 0 b 0 c 0 d 0 N P b
170 104 108 110 divcld φ a 0 b 0 c 0 d 0 N P
171 170 111 114 expne0d φ a 0 b 0 c 0 d 0 N P b 0
172 169 171 jca φ a 0 b 0 c 0 d 0 N P b N P b 0
173 100 165 172 3jca φ a 0 b 0 c 0 d 0 Q P a P a 0 N P b N P b 0
174 pcmul Q P a P a 0 N P b N P b 0 Q pCnt P a N P b = Q pCnt P a + Q pCnt N P b
175 173 174 syl φ a 0 b 0 c 0 d 0 Q pCnt P a N P b = Q pCnt P a + Q pCnt N P b
176 175 adantr φ a 0 b 0 c 0 d 0 b d Q pCnt P a N P b = Q pCnt P a + Q pCnt N P b
177 176 eqcomd φ a 0 b 0 c 0 d 0 b d Q pCnt P a + Q pCnt N P b = Q pCnt P a N P b
178 150 nnzd φ a 0 b 0 c 0 d 0 P c
179 150 nnne0d φ a 0 b 0 c 0 d 0 P c 0
180 178 179 jca φ a 0 b 0 c 0 d 0 P c P c 0
181 43 120 nnexpcld φ a 0 b 0 c 0 d 0 N P d
182 181 nnzd φ a 0 b 0 c 0 d 0 N P d
183 181 nnne0d φ a 0 b 0 c 0 d 0 N P d 0
184 182 183 jca φ a 0 b 0 c 0 d 0 N P d N P d 0
185 100 180 184 3jca φ a 0 b 0 c 0 d 0 Q P c P c 0 N P d N P d 0
186 pcmul Q P c P c 0 N P d N P d 0 Q pCnt P c N P d = Q pCnt P c + Q pCnt N P d
187 185 186 syl φ a 0 b 0 c 0 d 0 Q pCnt P c N P d = Q pCnt P c + Q pCnt N P d
188 187 adantr φ a 0 b 0 c 0 d 0 b d Q pCnt P c N P d = Q pCnt P c + Q pCnt N P d
189 188 eqcomd φ a 0 b 0 c 0 d 0 b d Q pCnt P c + Q pCnt N P d = Q pCnt P c N P d
190 158 177 189 3netr3d φ a 0 b 0 c 0 d 0 b d Q pCnt P a N P b Q pCnt P c N P d
191 29 33 190 rspcedvd φ a 0 b 0 c 0 d 0 b d p p pCnt P a N P b p pCnt P c N P d
192 2 ad5antr φ a 0 b 0 c 0 d 0 b = d a c P
193 simpr φ a 0 b 0 c 0 d 0 b = d a c p = P p = P
194 193 oveq1d φ a 0 b 0 c 0 d 0 b = d a c p = P p pCnt P a N P b = P pCnt P a N P b
195 193 oveq1d φ a 0 b 0 c 0 d 0 b = d a c p = P p pCnt P c N P d = P pCnt P c N P d
196 194 195 neeq12d φ a 0 b 0 c 0 d 0 b = d a c p = P p pCnt P a N P b p pCnt P c N P d P pCnt P a N P b P pCnt P c N P d
197 130 adantr φ a 0 b 0 c 0 d 0 b = d a c P
198 197 35 syl φ a 0 b 0 c 0 d 0 b = d a c P
199 simp-5r φ a 0 b 0 c 0 d 0 b = d a c a 0
200 198 199 nnexpcld φ a 0 b 0 c 0 d 0 b = d a c P a
201 197 200 pccld φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a 0
202 201 nn0cnd φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a
203 simpllr φ a 0 b 0 c 0 d 0 b = d a c c 0
204 198 203 nnexpcld φ a 0 b 0 c 0 d 0 b = d a c P c
205 197 204 pccld φ a 0 b 0 c 0 d 0 b = d a c P pCnt P c 0
206 205 nn0cnd φ a 0 b 0 c 0 d 0 b = d a c P pCnt P c
207 43 adantr φ a 0 b 0 c 0 d 0 b = d a c N P
208 simp-4r φ a 0 b 0 c 0 d 0 b = d a c b 0
209 207 208 nnexpcld φ a 0 b 0 c 0 d 0 b = d a c N P b
210 197 209 pccld φ a 0 b 0 c 0 d 0 b = d a c P pCnt N P b 0
211 210 nn0cnd φ a 0 b 0 c 0 d 0 b = d a c P pCnt N P b
212 11 adantl φ a 0 b 0 c 0 d 0 b = d a c a c
213 197 199 jca φ a 0 b 0 c 0 d 0 b = d a c P a 0
214 pcidlem P a 0 P pCnt P a = a
215 213 214 syl φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a = a
216 215 eqcomd φ a 0 b 0 c 0 d 0 b = d a c a = P pCnt P a
217 197 203 jca φ a 0 b 0 c 0 d 0 b = d a c P c 0
218 pcidlem P c 0 P pCnt P c = c
219 217 218 syl φ a 0 b 0 c 0 d 0 b = d a c P pCnt P c = c
220 219 eqcomd φ a 0 b 0 c 0 d 0 b = d a c c = P pCnt P c
221 212 216 220 3netr3d φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a P pCnt P c
222 202 206 211 221 addneintr2d φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a + P pCnt N P b P pCnt P c + P pCnt N P b
223 eqidd φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a + P pCnt N P b = P pCnt P a + P pCnt N P b
224 simprl φ a 0 b 0 c 0 d 0 b = d a c b = d
225 224 oveq2d φ a 0 b 0 c 0 d 0 b = d a c N P b = N P d
226 225 oveq2d φ a 0 b 0 c 0 d 0 b = d a c P pCnt N P b = P pCnt N P d
227 226 oveq2d φ a 0 b 0 c 0 d 0 b = d a c P pCnt P c + P pCnt N P b = P pCnt P c + P pCnt N P d
228 222 223 227 3netr3d φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a + P pCnt N P b P pCnt P c + P pCnt N P d
229 130 165 172 3jca φ a 0 b 0 c 0 d 0 P P a P a 0 N P b N P b 0
230 pcmul P P a P a 0 N P b N P b 0 P pCnt P a N P b = P pCnt P a + P pCnt N P b
231 229 230 syl φ a 0 b 0 c 0 d 0 P pCnt P a N P b = P pCnt P a + P pCnt N P b
232 231 eqcomd φ a 0 b 0 c 0 d 0 P pCnt P a + P pCnt N P b = P pCnt P a N P b
233 232 adantr φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a + P pCnt N P b = P pCnt P a N P b
234 130 180 184 3jca φ a 0 b 0 c 0 d 0 P P c P c 0 N P d N P d 0
235 pcmul P P c P c 0 N P d N P d 0 P pCnt P c N P d = P pCnt P c + P pCnt N P d
236 235 eqcomd P P c P c 0 N P d N P d 0 P pCnt P c + P pCnt N P d = P pCnt P c N P d
237 234 236 syl φ a 0 b 0 c 0 d 0 P pCnt P c + P pCnt N P d = P pCnt P c N P d
238 237 adantr φ a 0 b 0 c 0 d 0 b = d a c P pCnt P c + P pCnt N P d = P pCnt P c N P d
239 228 233 238 3netr3d φ a 0 b 0 c 0 d 0 b = d a c P pCnt P a N P b P pCnt P c N P d
240 192 196 239 rspcedvd φ a 0 b 0 c 0 d 0 b = d a c p p pCnt P a N P b p pCnt P c N P d
241 191 240 jaodan φ a 0 b 0 c 0 d 0 b d b = d a c p p pCnt P a N P b p pCnt P c N P d
242 biidd φ a 0 b 0 c 0 d 0 P a N P b = P c N P d P a N P b = P c N P d
243 242 necon3abid φ a 0 b 0 c 0 d 0 P a N P b P c N P d ¬ P a N P b = P c N P d
244 simpr φ a 0 b 0 b 0
245 42 244 nnexpcld φ a 0 b 0 N P b
246 137 245 nnmulcld φ a 0 b 0 P a N P b
247 246 adantr φ a 0 b 0 c 0 P a N P b
248 247 adantr φ a 0 b 0 c 0 d 0 P a N P b
249 248 nnnn0d φ a 0 b 0 c 0 d 0 P a N P b 0
250 150 181 nnmulcld φ a 0 b 0 c 0 d 0 P c N P d
251 250 nnnn0d φ a 0 b 0 c 0 d 0 P c N P d 0
252 249 251 jca φ a 0 b 0 c 0 d 0 P a N P b 0 P c N P d 0
253 pc11 P a N P b 0 P c N P d 0 P a N P b = P c N P d p p pCnt P a N P b = p pCnt P c N P d
254 252 253 syl φ a 0 b 0 c 0 d 0 P a N P b = P c N P d p p pCnt P a N P b = p pCnt P c N P d
255 254 notbid φ a 0 b 0 c 0 d 0 ¬ P a N P b = P c N P d ¬ p p pCnt P a N P b = p pCnt P c N P d
256 243 255 bitrd φ a 0 b 0 c 0 d 0 P a N P b P c N P d ¬ p p pCnt P a N P b = p pCnt P c N P d
257 rexnal p ¬ p pCnt P a N P b = p pCnt P c N P d ¬ p p pCnt P a N P b = p pCnt P c N P d
258 257 bicomi ¬ p p pCnt P a N P b = p pCnt P c N P d p ¬ p pCnt P a N P b = p pCnt P c N P d
259 258 a1i φ a 0 b 0 c 0 d 0 ¬ p p pCnt P a N P b = p pCnt P c N P d p ¬ p pCnt P a N P b = p pCnt P c N P d
260 256 259 bitrd φ a 0 b 0 c 0 d 0 P a N P b P c N P d p ¬ p pCnt P a N P b = p pCnt P c N P d
261 biidd φ a 0 b 0 c 0 d 0 p pCnt P a N P b = p pCnt P c N P d p pCnt P a N P b = p pCnt P c N P d
262 261 necon3bbid φ a 0 b 0 c 0 d 0 ¬ p pCnt P a N P b = p pCnt P c N P d p pCnt P a N P b p pCnt P c N P d
263 262 rexbidv φ a 0 b 0 c 0 d 0 p ¬ p pCnt P a N P b = p pCnt P c N P d p p pCnt P a N P b p pCnt P c N P d
264 260 263 bitrd φ a 0 b 0 c 0 d 0 P a N P b P c N P d p p pCnt P a N P b p pCnt P c N P d
265 264 adantr φ a 0 b 0 c 0 d 0 b d b = d a c P a N P b P c N P d p p pCnt P a N P b p pCnt P c N P d
266 241 265 mpbird φ a 0 b 0 c 0 d 0 b d b = d a c P a N P b P c N P d
267 28 266 sylan2br φ a 0 b 0 c 0 d 0 ¬ a = c b = d P a N P b P c N P d
268 4 a1i φ a 0 b 0 c 0 d 0 E = k 0 , l 0 P k N P l
269 simprl φ a 0 b 0 c 0 d 0 k = a l = b k = a
270 269 oveq2d φ a 0 b 0 c 0 d 0 k = a l = b P k = P a
271 simprr φ a 0 b 0 c 0 d 0 k = a l = b l = b
272 271 oveq2d φ a 0 b 0 c 0 d 0 k = a l = b N P l = N P b
273 270 272 oveq12d φ a 0 b 0 c 0 d 0 k = a l = b P k N P l = P a N P b
274 268 273 131 113 248 ovmpod φ a 0 b 0 c 0 d 0 a E b = P a N P b
275 simprl φ a 0 b 0 c 0 d 0 k = c l = d k = c
276 275 oveq2d φ a 0 b 0 c 0 d 0 k = c l = d P k = P c
277 simprr φ a 0 b 0 c 0 d 0 k = c l = d l = d
278 277 oveq2d φ a 0 b 0 c 0 d 0 k = c l = d N P l = N P d
279 276 278 oveq12d φ a 0 b 0 c 0 d 0 k = c l = d P k N P l = P c N P d
280 268 279 146 120 250 ovmpod φ a 0 b 0 c 0 d 0 c E d = P c N P d
281 274 280 neeq12d φ a 0 b 0 c 0 d 0 a E b c E d P a N P b P c N P d
282 281 adantr φ a 0 b 0 c 0 d 0 ¬ a = c b = d a E b c E d P a N P b P c N P d
283 267 282 mpbird φ a 0 b 0 c 0 d 0 ¬ a = c b = d a E b c E d
284 283 neneqd φ a 0 b 0 c 0 d 0 ¬ a = c b = d ¬ a E b = c E d
285 284 ex φ a 0 b 0 c 0 d 0 ¬ a = c b = d ¬ a E b = c E d
286 285 con4d φ a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
287 286 ralrimiva φ a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
288 287 ralrimiva φ a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
289 288 ralrimiva φ a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
290 289 ralrimiva φ a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
291 8 290 jca φ E : 0 × 0 a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
292 f1opr E : 0 × 0 1-1 E : 0 × 0 a 0 b 0 c 0 d 0 a E b = c E d a = c b = d
293 291 292 sylibr φ E : 0 × 0 1-1