Metamath Proof Explorer


Theorem aks6d1c2p2

Description: Injective condition for countability argument assuming that N is not a prime power. (Contributed by metakunt, 7-Jan-2025)

Ref Expression
Hypotheses aks6d1c2p2.1 ( 𝜑𝑁 ∈ ℕ )
aks6d1c2p2.2 ( 𝜑𝑃 ∈ ℙ )
aks6d1c2p2.3 ( 𝜑𝑃𝑁 )
aks6d1c2p2.4 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
aks6d1c2p2.5 ( 𝜑𝑄 ∈ ℙ )
aks6d1c2p2.6 ( 𝜑𝑄𝑁 )
aks6d1c2p2.7 ( 𝜑𝑃𝑄 )
Assertion aks6d1c2p2 ( 𝜑𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ )

Proof

Step Hyp Ref Expression
1 aks6d1c2p2.1 ( 𝜑𝑁 ∈ ℕ )
2 aks6d1c2p2.2 ( 𝜑𝑃 ∈ ℙ )
3 aks6d1c2p2.3 ( 𝜑𝑃𝑁 )
4 aks6d1c2p2.4 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) )
5 aks6d1c2p2.5 ( 𝜑𝑄 ∈ ℙ )
6 aks6d1c2p2.6 ( 𝜑𝑄𝑁 )
7 aks6d1c2p2.7 ( 𝜑𝑃𝑄 )
8 1 2 3 4 aks6d1c2p1 ( 𝜑𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ )
9 neneq ( 𝑏𝑑 → ¬ 𝑏 = 𝑑 )
10 9 orcd ( 𝑏𝑑 → ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) )
11 simpr ( ( 𝑏 = 𝑑𝑎𝑐 ) → 𝑎𝑐 )
12 11 neneqd ( ( 𝑏 = 𝑑𝑎𝑐 ) → ¬ 𝑎 = 𝑐 )
13 12 olcd ( ( 𝑏 = 𝑑𝑎𝑐 ) → ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) )
14 10 13 jaoi ( ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) )
15 neqne ( ¬ 𝑏 = 𝑑𝑏𝑑 )
16 15 orcd ( ¬ 𝑏 = 𝑑 → ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) )
17 neqne ( ¬ 𝑎 = 𝑐𝑎𝑐 )
18 17 anim1ci ( ( ¬ 𝑎 = 𝑐𝑏 = 𝑑 ) → ( 𝑏 = 𝑑𝑎𝑐 ) )
19 18 olcd ( ( ¬ 𝑎 = 𝑐𝑏 = 𝑑 ) → ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) )
20 16 adantl ( ( ¬ 𝑎 = 𝑐 ∧ ¬ 𝑏 = 𝑑 ) → ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) )
21 19 20 pm2.61dan ( ¬ 𝑎 = 𝑐 → ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) )
22 16 21 jaoi ( ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) → ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) )
23 14 22 impbii ( ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) ↔ ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) )
24 orcom ( ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) )
25 23 24 bitri ( ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) )
26 ianor ( ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) )
27 26 bicomi ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ↔ ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) )
28 25 27 bitri ( ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) ↔ ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) )
29 5 ad5antr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝑄 ∈ ℙ )
30 simpr ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) ∧ 𝑝 = 𝑄 ) → 𝑝 = 𝑄 )
31 30 oveq1d ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) ∧ 𝑝 = 𝑄 ) → ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
32 30 oveq1d ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) ∧ 𝑝 = 𝑄 ) → ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
33 31 32 neeq12d ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) ∧ 𝑝 = 𝑄 ) → ( ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
34 0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 0 ∈ ℂ )
35 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
36 2 35 syl ( 𝜑𝑃 ∈ ℕ )
37 1 36 jca ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ ) )
38 nndivdvds ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑃𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℕ ) )
39 37 38 syl ( 𝜑 → ( 𝑃𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℕ ) )
40 3 39 mpbid ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ )
41 40 adantr ( ( 𝜑𝑎 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℕ )
42 41 adantr ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℕ )
43 42 ad2antrr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℕ )
44 43 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑁 / 𝑃 ) ∈ ℕ )
45 simp-4r ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝑏 ∈ ℕ0 )
46 44 45 nnexpcld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℕ )
47 29 46 pccld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 )
48 47 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℂ )
49 simplr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝑑 ∈ ℕ0 )
50 44 49 nnexpcld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℕ )
51 29 50 pccld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 )
52 51 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℂ )
53 simpr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝑏𝑑 )
54 45 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝑏 ∈ ℂ )
55 49 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝑑 ∈ ℂ )
56 29 44 pccld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ0 )
57 56 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℂ )
58 simp-5l ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → 𝜑 )
59 1 nncnd ( 𝜑𝑁 ∈ ℂ )
60 36 nncnd ( 𝜑𝑃 ∈ ℂ )
61 36 nnne0d ( 𝜑𝑃 ≠ 0 )
62 59 60 61 divcan2d ( 𝜑 → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 )
63 62 eqcomd ( 𝜑𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) )
64 63 breq2d ( 𝜑 → ( 𝑄𝑁𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) )
65 6 64 mpbid ( 𝜑𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) )
66 36 nnzd ( 𝜑𝑃 ∈ ℤ )
67 40 nnzd ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ )
68 euclemma ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ) → ( 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↔ ( 𝑄𝑃𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) )
69 5 66 67 68 syl3anc ( 𝜑 → ( 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↔ ( 𝑄𝑃𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) )
70 69 biimpd ( 𝜑 → ( 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) → ( 𝑄𝑃𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) )
71 65 70 mpd ( 𝜑 → ( 𝑄𝑃𝑄 ∥ ( 𝑁 / 𝑃 ) ) )
72 necom ( 𝑃𝑄𝑄𝑃 )
73 72 imbi2i ( ( 𝜑𝑃𝑄 ) ↔ ( 𝜑𝑄𝑃 ) )
74 7 73 mpbi ( 𝜑𝑄𝑃 )
75 74 neneqd ( 𝜑 → ¬ 𝑄 = 𝑃 )
76 1red ( 𝜑 → 1 ∈ ℝ )
77 prmgt1 ( 𝑄 ∈ ℙ → 1 < 𝑄 )
78 5 77 syl ( 𝜑 → 1 < 𝑄 )
79 76 78 ltned ( 𝜑 → 1 ≠ 𝑄 )
80 79 necomd ( 𝜑𝑄 ≠ 1 )
81 80 neneqd ( 𝜑 → ¬ 𝑄 = 1 )
82 75 81 jca ( 𝜑 → ( ¬ 𝑄 = 𝑃 ∧ ¬ 𝑄 = 1 ) )
83 pm4.56 ( ( ¬ 𝑄 = 𝑃 ∧ ¬ 𝑄 = 1 ) ↔ ¬ ( 𝑄 = 𝑃𝑄 = 1 ) )
84 82 83 sylib ( 𝜑 → ¬ ( 𝑄 = 𝑃𝑄 = 1 ) )
85 prmnn ( 𝑄 ∈ ℙ → 𝑄 ∈ ℕ )
86 5 85 syl ( 𝜑𝑄 ∈ ℕ )
87 dvdsprime ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℕ ) → ( 𝑄𝑃 ↔ ( 𝑄 = 𝑃𝑄 = 1 ) ) )
88 2 86 87 syl2anc ( 𝜑 → ( 𝑄𝑃 ↔ ( 𝑄 = 𝑃𝑄 = 1 ) ) )
89 84 88 mtbird ( 𝜑 → ¬ 𝑄𝑃 )
90 71 89 orcnd ( 𝜑𝑄 ∥ ( 𝑁 / 𝑃 ) )
91 5 40 jca ( 𝜑 → ( 𝑄 ∈ ℙ ∧ ( 𝑁 / 𝑃 ) ∈ ℕ ) )
92 pcelnn ( ( 𝑄 ∈ ℙ ∧ ( 𝑁 / 𝑃 ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ ↔ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) )
93 91 92 syl ( 𝜑 → ( ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ ↔ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) )
94 90 93 mpbird ( 𝜑 → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ )
95 58 94 syl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ )
96 95 nnne0d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ≠ 0 )
97 54 55 57 96 mulcan2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ↔ 𝑏 = 𝑑 ) )
98 97 necon3bid ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ≠ ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ↔ 𝑏𝑑 ) )
99 53 98 mpbird ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ≠ ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
100 5 ad4antr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑄 ∈ ℙ )
101 nnq ( ( 𝑁 / 𝑃 ) ∈ ℕ → ( 𝑁 / 𝑃 ) ∈ ℚ )
102 43 101 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℚ )
103 1 ad4antr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑁 ∈ ℕ )
104 103 nncnd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑁 ∈ ℂ )
105 36 adantr ( ( 𝜑𝑎 ∈ ℕ0 ) → 𝑃 ∈ ℕ )
106 105 adantr ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → 𝑃 ∈ ℕ )
107 106 ad2antrr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℕ )
108 107 nncnd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℂ )
109 103 nnne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑁 ≠ 0 )
110 107 nnne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ≠ 0 )
111 104 108 109 110 divne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ≠ 0 )
112 102 111 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) )
113 simpllr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 )
114 113 nn0zd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑏 ∈ ℤ )
115 100 112 114 3jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑏 ∈ ℤ ) )
116 pcexp ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑏 ∈ ℤ ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
117 115 116 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
118 117 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
119 118 eqcomd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) = ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) )
120 simpr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℕ0 )
121 120 nn0zd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℤ )
122 100 112 121 3jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑑 ∈ ℤ ) )
123 pcexp ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑑 ∈ ℤ ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
124 122 123 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
125 124 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) )
126 125 eqcomd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) = ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
127 99 119 126 3netr3d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
128 34 48 52 127 addneintrd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
129 75 ad4antr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ¬ 𝑄 = 𝑃 )
130 2 ad4antr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℙ )
131 simp-4r ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 )
132 prmdvdsexpr ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃𝑎 ) → 𝑄 = 𝑃 ) )
133 100 130 131 132 syl3anc ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃𝑎 ) → 𝑄 = 𝑃 ) )
134 133 con3d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ 𝑄 = 𝑃 → ¬ 𝑄 ∥ ( 𝑃𝑎 ) ) )
135 129 134 mpd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ¬ 𝑄 ∥ ( 𝑃𝑎 ) )
136 simplr ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 )
137 106 136 nnexpcld ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃𝑎 ) ∈ ℕ )
138 137 ad2antrr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃𝑎 ) ∈ ℕ )
139 100 138 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( 𝑃𝑎 ) ∈ ℕ ) )
140 pceq0 ( ( 𝑄 ∈ ℙ ∧ ( 𝑃𝑎 ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃𝑎 ) ) )
141 139 140 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃𝑎 ) ) )
142 135 141 mpbird ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( 𝑃𝑎 ) ) = 0 )
143 142 eqcomd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 0 = ( 𝑄 pCnt ( 𝑃𝑎 ) ) )
144 143 oveq1d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
145 144 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
146 simplr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑐 ∈ ℕ0 )
147 prmdvdsexpr ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑐 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃𝑐 ) → 𝑄 = 𝑃 ) )
148 100 130 146 147 syl3anc ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃𝑐 ) → 𝑄 = 𝑃 ) )
149 129 148 mtod ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ¬ 𝑄 ∥ ( 𝑃𝑐 ) )
150 107 146 nnexpcld ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃𝑐 ) ∈ ℕ )
151 100 150 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( 𝑃𝑐 ) ∈ ℕ ) )
152 pceq0 ( ( 𝑄 ∈ ℙ ∧ ( 𝑃𝑐 ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃𝑐 ) ) )
153 151 152 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃𝑐 ) ) )
154 149 153 mpbird ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( 𝑃𝑐 ) ) = 0 )
155 154 eqcomd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 0 = ( 𝑄 pCnt ( 𝑃𝑐 ) ) )
156 155 oveq1d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
157 156 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
158 128 145 157 3netr3d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
159 107 nnzd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℤ )
160 159 131 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ∈ ℤ ∧ 𝑎 ∈ ℕ0 ) )
161 zexpcl ( ( 𝑃 ∈ ℤ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑃𝑎 ) ∈ ℤ )
162 160 161 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃𝑎 ) ∈ ℤ )
163 131 nn0zd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑎 ∈ ℤ )
164 108 110 163 expne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃𝑎 ) ≠ 0 )
165 162 164 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃𝑎 ) ∈ ℤ ∧ ( 𝑃𝑎 ) ≠ 0 ) )
166 43 nnzd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ )
167 166 113 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑏 ∈ ℕ0 ) )
168 zexpcl ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ )
169 167 168 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ )
170 104 108 110 divcld ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℂ )
171 170 111 114 expne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 )
172 169 171 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) )
173 100 165 172 3jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑃𝑎 ) ∈ ℤ ∧ ( 𝑃𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) )
174 pcmul ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑃𝑎 ) ∈ ℤ ∧ ( 𝑃𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) → ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
175 173 174 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
176 175 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
177 176 eqcomd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑄 pCnt ( 𝑃𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
178 150 nnzd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃𝑐 ) ∈ ℤ )
179 150 nnne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃𝑐 ) ≠ 0 )
180 178 179 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃𝑐 ) ∈ ℤ ∧ ( 𝑃𝑐 ) ≠ 0 ) )
181 43 120 nnexpcld ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℕ )
182 181 nnzd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ )
183 181 nnne0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 )
184 182 183 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) )
185 100 180 184 3jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑃𝑐 ) ∈ ℤ ∧ ( 𝑃𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) )
186 pcmul ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑃𝑐 ) ∈ ℤ ∧ ( 𝑃𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) → ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
187 185 186 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
188 187 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
189 188 eqcomd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( ( 𝑄 pCnt ( 𝑃𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
190 158 177 189 3netr3d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ( 𝑄 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑄 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
191 29 33 190 rspcedvd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏𝑑 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
192 2 ad5antr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑃 ∈ ℙ )
193 simpr ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 )
194 193 oveq1d ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
195 193 oveq1d ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
196 194 195 neeq12d ( ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
197 130 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑃 ∈ ℙ )
198 197 35 syl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑃 ∈ ℕ )
199 simp-5r ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑎 ∈ ℕ0 )
200 198 199 nnexpcld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃𝑎 ) ∈ ℕ )
201 197 200 pccld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑎 ) ) ∈ ℕ0 )
202 201 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑎 ) ) ∈ ℂ )
203 simpllr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑐 ∈ ℕ0 )
204 198 203 nnexpcld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃𝑐 ) ∈ ℕ )
205 197 204 pccld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑐 ) ) ∈ ℕ0 )
206 205 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑐 ) ) ∈ ℂ )
207 43 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ )
208 simp-4r ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑏 ∈ ℕ0 )
209 207 208 nnexpcld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℕ )
210 197 209 pccld ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 )
211 210 nn0cnd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℂ )
212 11 adantl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑎𝑐 )
213 197 199 jca ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0 ) )
214 pcidlem ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃𝑎 ) ) = 𝑎 )
215 213 214 syl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑎 ) ) = 𝑎 )
216 215 eqcomd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑎 = ( 𝑃 pCnt ( 𝑃𝑎 ) ) )
217 197 203 jca ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 ∈ ℙ ∧ 𝑐 ∈ ℕ0 ) )
218 pcidlem ( ( 𝑃 ∈ ℙ ∧ 𝑐 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃𝑐 ) ) = 𝑐 )
219 217 218 syl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑐 ) ) = 𝑐 )
220 219 eqcomd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑐 = ( 𝑃 pCnt ( 𝑃𝑐 ) ) )
221 212 216 220 3netr3d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( 𝑃𝑎 ) ) ≠ ( 𝑃 pCnt ( 𝑃𝑐 ) ) )
222 202 206 211 221 addneintr2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
223 eqidd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
224 simprl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → 𝑏 = 𝑑 )
225 224 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) )
226 225 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
227 226 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
228 222 223 227 3netr3d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
229 130 165 172 3jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ∈ ℙ ∧ ( ( 𝑃𝑎 ) ∈ ℤ ∧ ( 𝑃𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) )
230 pcmul ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑃𝑎 ) ∈ ℤ ∧ ( 𝑃𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
231 229 230 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
232 231 eqcomd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
233 232 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) )
234 130 180 184 3jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ∈ ℙ ∧ ( ( 𝑃𝑐 ) ∈ ℤ ∧ ( 𝑃𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) )
235 pcmul ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑃𝑐 ) ∈ ℤ ∧ ( 𝑃𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
236 235 eqcomd ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑃𝑐 ) ∈ ℤ ∧ ( 𝑃𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
237 234 236 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
238 237 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
239 228 233 238 3netr3d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑃 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
240 192 196 239 rspcedvd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑𝑎𝑐 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
241 191 240 jaodan ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
242 biidd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
243 242 necon3abid ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ¬ ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
244 simpr ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 )
245 42 244 nnexpcld ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℕ )
246 137 245 nnmulcld ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ )
247 246 adantr ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ )
248 247 adantr ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ )
249 248 nnnn0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 )
250 150 181 nnmulcld ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ )
251 250 nnnn0d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 )
252 249 251 jca ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ∧ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 ) )
253 pc11 ( ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ∧ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
254 252 253 syl ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
255 254 notbid ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
256 243 255 bitrd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
257 rexnal ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
258 257 bicomi ( ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
259 258 a1i ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
260 256 259 bitrd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
261 biidd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
262 261 necon3bbid ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
263 262 rexbidv ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
264 260 263 bitrd ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
265 264 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) ) → ( ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) )
266 241 265 mpbird ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏𝑑 ∨ ( 𝑏 = 𝑑𝑎𝑐 ) ) ) → ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
267 28 266 sylan2br ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) → ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
268 4 a1i ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) )
269 simprl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎𝑙 = 𝑏 ) ) → 𝑘 = 𝑎 )
270 269 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎𝑙 = 𝑏 ) ) → ( 𝑃𝑘 ) = ( 𝑃𝑎 ) )
271 simprr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎𝑙 = 𝑏 ) ) → 𝑙 = 𝑏 )
272 271 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎𝑙 = 𝑏 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) )
273 270 272 oveq12d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎𝑙 = 𝑏 ) ) → ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) )
274 268 273 131 113 248 ovmpod ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑎 𝐸 𝑏 ) = ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) )
275 simprl ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐𝑙 = 𝑑 ) ) → 𝑘 = 𝑐 )
276 275 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐𝑙 = 𝑑 ) ) → ( 𝑃𝑘 ) = ( 𝑃𝑐 ) )
277 simprr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐𝑙 = 𝑑 ) ) → 𝑙 = 𝑑 )
278 277 oveq2d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐𝑙 = 𝑑 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) )
279 276 278 oveq12d ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐𝑙 = 𝑑 ) ) → ( ( 𝑃𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
280 268 279 146 120 250 ovmpod ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑐 𝐸 𝑑 ) = ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) )
281 274 280 neeq12d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑎 𝐸 𝑏 ) ≠ ( 𝑐 𝐸 𝑑 ) ↔ ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
282 281 adantr ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) → ( ( 𝑎 𝐸 𝑏 ) ≠ ( 𝑐 𝐸 𝑑 ) ↔ ( ( 𝑃𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) )
283 267 282 mpbird ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) → ( 𝑎 𝐸 𝑏 ) ≠ ( 𝑐 𝐸 𝑑 ) )
284 283 neneqd ( ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) → ¬ ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) )
285 284 ex ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ( 𝑎 = 𝑐𝑏 = 𝑑 ) → ¬ ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) ) )
286 285 con4d ( ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) )
287 286 ralrimiva ( ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) )
288 287 ralrimiva ( ( ( 𝜑𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ∀ 𝑐 ∈ ℕ0𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) )
289 288 ralrimiva ( ( 𝜑𝑎 ∈ ℕ0 ) → ∀ 𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) )
290 289 ralrimiva ( 𝜑 → ∀ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) )
291 8 290 jca ( 𝜑 → ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ∧ ∀ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) ) )
292 f1opr ( 𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ ↔ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ∧ ∀ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐𝑏 = 𝑑 ) ) ) )
293 291 292 sylibr ( 𝜑𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ )