| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2p2.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | aks6d1c2p2.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | aks6d1c2p2.3 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 4 |  | aks6d1c2p2.4 | ⊢ 𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) | 
						
							| 5 |  | aks6d1c2p2.5 | ⊢ ( 𝜑  →  𝑄  ∈  ℙ ) | 
						
							| 6 |  | aks6d1c2p2.6 | ⊢ ( 𝜑  →  𝑄  ∥  𝑁 ) | 
						
							| 7 |  | aks6d1c2p2.7 | ⊢ ( 𝜑  →  𝑃  ≠  𝑄 ) | 
						
							| 8 | 1 2 3 4 | aks6d1c2p1 | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ ) | 
						
							| 9 |  | neneq | ⊢ ( 𝑏  ≠  𝑑  →  ¬  𝑏  =  𝑑 ) | 
						
							| 10 | 9 | orcd | ⊢ ( 𝑏  ≠  𝑑  →  ( ¬  𝑏  =  𝑑  ∨  ¬  𝑎  =  𝑐 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 )  →  𝑎  ≠  𝑐 ) | 
						
							| 12 | 11 | neneqd | ⊢ ( ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 )  →  ¬  𝑎  =  𝑐 ) | 
						
							| 13 | 12 | olcd | ⊢ ( ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 )  →  ( ¬  𝑏  =  𝑑  ∨  ¬  𝑎  =  𝑐 ) ) | 
						
							| 14 | 10 13 | jaoi | ⊢ ( ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ¬  𝑏  =  𝑑  ∨  ¬  𝑎  =  𝑐 ) ) | 
						
							| 15 |  | neqne | ⊢ ( ¬  𝑏  =  𝑑  →  𝑏  ≠  𝑑 ) | 
						
							| 16 | 15 | orcd | ⊢ ( ¬  𝑏  =  𝑑  →  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) ) | 
						
							| 17 |  | neqne | ⊢ ( ¬  𝑎  =  𝑐  →  𝑎  ≠  𝑐 ) | 
						
							| 18 | 17 | anim1ci | ⊢ ( ( ¬  𝑎  =  𝑐  ∧  𝑏  =  𝑑 )  →  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) | 
						
							| 19 | 18 | olcd | ⊢ ( ( ¬  𝑎  =  𝑐  ∧  𝑏  =  𝑑 )  →  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) ) | 
						
							| 20 | 16 | adantl | ⊢ ( ( ¬  𝑎  =  𝑐  ∧  ¬  𝑏  =  𝑑 )  →  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) ) | 
						
							| 21 | 19 20 | pm2.61dan | ⊢ ( ¬  𝑎  =  𝑐  →  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) ) | 
						
							| 22 | 16 21 | jaoi | ⊢ ( ( ¬  𝑏  =  𝑑  ∨  ¬  𝑎  =  𝑐 )  →  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) ) | 
						
							| 23 | 14 22 | impbii | ⊢ ( ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ↔  ( ¬  𝑏  =  𝑑  ∨  ¬  𝑎  =  𝑐 ) ) | 
						
							| 24 |  | orcom | ⊢ ( ( ¬  𝑏  =  𝑑  ∨  ¬  𝑎  =  𝑐 )  ↔  ( ¬  𝑎  =  𝑐  ∨  ¬  𝑏  =  𝑑 ) ) | 
						
							| 25 | 23 24 | bitri | ⊢ ( ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ↔  ( ¬  𝑎  =  𝑐  ∨  ¬  𝑏  =  𝑑 ) ) | 
						
							| 26 |  | ianor | ⊢ ( ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 )  ↔  ( ¬  𝑎  =  𝑐  ∨  ¬  𝑏  =  𝑑 ) ) | 
						
							| 27 | 26 | bicomi | ⊢ ( ( ¬  𝑎  =  𝑐  ∨  ¬  𝑏  =  𝑑 )  ↔  ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) | 
						
							| 28 | 25 27 | bitri | ⊢ ( ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ↔  ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) | 
						
							| 29 | 5 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝑄  ∈  ℙ ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  ∧  𝑝  =  𝑄 )  →  𝑝  =  𝑄 ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  ∧  𝑝  =  𝑄 )  →  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 32 | 30 | oveq1d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  ∧  𝑝  =  𝑄 )  →  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 33 | 31 32 | neeq12d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  ∧  𝑝  =  𝑄 )  →  ( ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 34 |  | 0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  0  ∈  ℂ ) | 
						
							| 35 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 36 | 2 35 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 37 | 1 36 | jca | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℕ ) ) | 
						
							| 38 |  | nndivdvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℕ )  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℕ ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  ↔  ( 𝑁  /  𝑃 )  ∈  ℕ ) ) | 
						
							| 40 | 3 39 | mpbid | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℕ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℕ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℕ ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℕ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑁  /  𝑃 )  ∈  ℕ ) | 
						
							| 45 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝑏  ∈  ℕ0 ) | 
						
							| 46 | 44 45 | nnexpcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℕ ) | 
						
							| 47 | 29 46 | pccld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ0 ) | 
						
							| 48 | 47 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℂ ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝑑  ∈  ℕ0 ) | 
						
							| 50 | 44 49 | nnexpcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℕ ) | 
						
							| 51 | 29 50 | pccld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ∈  ℕ0 ) | 
						
							| 52 | 51 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ∈  ℂ ) | 
						
							| 53 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝑏  ≠  𝑑 ) | 
						
							| 54 | 45 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝑏  ∈  ℂ ) | 
						
							| 55 | 49 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝑑  ∈  ℂ ) | 
						
							| 56 | 29 44 | pccld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ∈  ℕ0 ) | 
						
							| 57 | 56 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ∈  ℂ ) | 
						
							| 58 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  𝜑 ) | 
						
							| 59 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 60 | 36 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 61 | 36 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 62 | 59 60 61 | divcan2d | ⊢ ( 𝜑  →  ( 𝑃  ·  ( 𝑁  /  𝑃 ) )  =  𝑁 ) | 
						
							| 63 | 62 | eqcomd | ⊢ ( 𝜑  →  𝑁  =  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 64 | 63 | breq2d | ⊢ ( 𝜑  →  ( 𝑄  ∥  𝑁  ↔  𝑄  ∥  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 65 | 6 64 | mpbid | ⊢ ( 𝜑  →  𝑄  ∥  ( 𝑃  ·  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 66 | 36 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 67 | 40 | nnzd | ⊢ ( 𝜑  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 68 |  | euclemma | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℤ  ∧  ( 𝑁  /  𝑃 )  ∈  ℤ )  →  ( 𝑄  ∥  ( 𝑃  ·  ( 𝑁  /  𝑃 ) )  ↔  ( 𝑄  ∥  𝑃  ∨  𝑄  ∥  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 69 | 5 66 67 68 | syl3anc | ⊢ ( 𝜑  →  ( 𝑄  ∥  ( 𝑃  ·  ( 𝑁  /  𝑃 ) )  ↔  ( 𝑄  ∥  𝑃  ∨  𝑄  ∥  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 70 | 69 | biimpd | ⊢ ( 𝜑  →  ( 𝑄  ∥  ( 𝑃  ·  ( 𝑁  /  𝑃 ) )  →  ( 𝑄  ∥  𝑃  ∨  𝑄  ∥  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 71 | 65 70 | mpd | ⊢ ( 𝜑  →  ( 𝑄  ∥  𝑃  ∨  𝑄  ∥  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 72 |  | necom | ⊢ ( 𝑃  ≠  𝑄  ↔  𝑄  ≠  𝑃 ) | 
						
							| 73 | 72 | imbi2i | ⊢ ( ( 𝜑  →  𝑃  ≠  𝑄 )  ↔  ( 𝜑  →  𝑄  ≠  𝑃 ) ) | 
						
							| 74 | 7 73 | mpbi | ⊢ ( 𝜑  →  𝑄  ≠  𝑃 ) | 
						
							| 75 | 74 | neneqd | ⊢ ( 𝜑  →  ¬  𝑄  =  𝑃 ) | 
						
							| 76 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 77 |  | prmgt1 | ⊢ ( 𝑄  ∈  ℙ  →  1  <  𝑄 ) | 
						
							| 78 | 5 77 | syl | ⊢ ( 𝜑  →  1  <  𝑄 ) | 
						
							| 79 | 76 78 | ltned | ⊢ ( 𝜑  →  1  ≠  𝑄 ) | 
						
							| 80 | 79 | necomd | ⊢ ( 𝜑  →  𝑄  ≠  1 ) | 
						
							| 81 | 80 | neneqd | ⊢ ( 𝜑  →  ¬  𝑄  =  1 ) | 
						
							| 82 | 75 81 | jca | ⊢ ( 𝜑  →  ( ¬  𝑄  =  𝑃  ∧  ¬  𝑄  =  1 ) ) | 
						
							| 83 |  | pm4.56 | ⊢ ( ( ¬  𝑄  =  𝑃  ∧  ¬  𝑄  =  1 )  ↔  ¬  ( 𝑄  =  𝑃  ∨  𝑄  =  1 ) ) | 
						
							| 84 | 82 83 | sylib | ⊢ ( 𝜑  →  ¬  ( 𝑄  =  𝑃  ∨  𝑄  =  1 ) ) | 
						
							| 85 |  | prmnn | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℕ ) | 
						
							| 86 | 5 85 | syl | ⊢ ( 𝜑  →  𝑄  ∈  ℕ ) | 
						
							| 87 |  | dvdsprime | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℕ )  →  ( 𝑄  ∥  𝑃  ↔  ( 𝑄  =  𝑃  ∨  𝑄  =  1 ) ) ) | 
						
							| 88 | 2 86 87 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄  ∥  𝑃  ↔  ( 𝑄  =  𝑃  ∨  𝑄  =  1 ) ) ) | 
						
							| 89 | 84 88 | mtbird | ⊢ ( 𝜑  →  ¬  𝑄  ∥  𝑃 ) | 
						
							| 90 | 71 89 | orcnd | ⊢ ( 𝜑  →  𝑄  ∥  ( 𝑁  /  𝑃 ) ) | 
						
							| 91 | 5 40 | jca | ⊢ ( 𝜑  →  ( 𝑄  ∈  ℙ  ∧  ( 𝑁  /  𝑃 )  ∈  ℕ ) ) | 
						
							| 92 |  | pcelnn | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( 𝑁  /  𝑃 )  ∈  ℕ )  →  ( ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ∈  ℕ  ↔  𝑄  ∥  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 93 | 91 92 | syl | ⊢ ( 𝜑  →  ( ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ∈  ℕ  ↔  𝑄  ∥  ( 𝑁  /  𝑃 ) ) ) | 
						
							| 94 | 90 93 | mpbird | ⊢ ( 𝜑  →  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ∈  ℕ ) | 
						
							| 95 | 58 94 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ∈  ℕ ) | 
						
							| 96 | 95 | nnne0d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) )  ≠  0 ) | 
						
							| 97 | 54 55 57 96 | mulcan2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  =  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  ↔  𝑏  =  𝑑 ) ) | 
						
							| 98 | 97 | necon3bid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  ≠  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  ↔  𝑏  ≠  𝑑 ) ) | 
						
							| 99 | 53 98 | mpbird | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  ≠  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 100 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑄  ∈  ℙ ) | 
						
							| 101 |  | nnq | ⊢ ( ( 𝑁  /  𝑃 )  ∈  ℕ  →  ( 𝑁  /  𝑃 )  ∈  ℚ ) | 
						
							| 102 | 43 101 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℚ ) | 
						
							| 103 | 1 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑁  ∈  ℕ ) | 
						
							| 104 | 103 | nncnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 105 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  𝑃  ∈  ℕ ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  𝑃  ∈  ℕ ) | 
						
							| 107 | 106 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑃  ∈  ℕ ) | 
						
							| 108 | 107 | nncnd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑃  ∈  ℂ ) | 
						
							| 109 | 103 | nnne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑁  ≠  0 ) | 
						
							| 110 | 107 | nnne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑃  ≠  0 ) | 
						
							| 111 | 104 108 109 110 | divne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ≠  0 ) | 
						
							| 112 | 102 111 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 )  ∈  ℚ  ∧  ( 𝑁  /  𝑃 )  ≠  0 ) ) | 
						
							| 113 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑏  ∈  ℕ0 ) | 
						
							| 114 | 113 | nn0zd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑏  ∈  ℤ ) | 
						
							| 115 | 100 112 114 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∈  ℙ  ∧  ( ( 𝑁  /  𝑃 )  ∈  ℚ  ∧  ( 𝑁  /  𝑃 )  ≠  0 )  ∧  𝑏  ∈  ℤ ) ) | 
						
							| 116 |  | pcexp | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( ( 𝑁  /  𝑃 )  ∈  ℚ  ∧  ( 𝑁  /  𝑃 )  ≠  0 )  ∧  𝑏  ∈  ℤ )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 117 | 115 116 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 119 | 118 | eqcomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑏  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  =  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) | 
						
							| 120 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑑  ∈  ℕ0 ) | 
						
							| 121 | 120 | nn0zd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑑  ∈  ℤ ) | 
						
							| 122 | 100 112 121 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∈  ℙ  ∧  ( ( 𝑁  /  𝑃 )  ∈  ℚ  ∧  ( 𝑁  /  𝑃 )  ≠  0 )  ∧  𝑑  ∈  ℤ ) ) | 
						
							| 123 |  | pcexp | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( ( 𝑁  /  𝑃 )  ∈  ℚ  ∧  ( 𝑁  /  𝑃 )  ≠  0 )  ∧  𝑑  ∈  ℤ )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  =  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 124 | 122 123 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  =  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  =  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) ) ) | 
						
							| 126 | 125 | eqcomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑑  ·  ( 𝑄  pCnt  ( 𝑁  /  𝑃 ) ) )  =  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 127 | 99 119 126 | 3netr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 128 | 34 48 52 127 | addneintrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 0  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 0  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 129 | 75 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ¬  𝑄  =  𝑃 ) | 
						
							| 130 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑃  ∈  ℙ ) | 
						
							| 131 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 132 |  | prmdvdsexpr | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ  ∧  𝑎  ∈  ℕ0 )  →  ( 𝑄  ∥  ( 𝑃 ↑ 𝑎 )  →  𝑄  =  𝑃 ) ) | 
						
							| 133 | 100 130 131 132 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∥  ( 𝑃 ↑ 𝑎 )  →  𝑄  =  𝑃 ) ) | 
						
							| 134 | 133 | con3d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ¬  𝑄  =  𝑃  →  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑎 ) ) ) | 
						
							| 135 | 129 134 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑎 ) ) | 
						
							| 136 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 137 | 106 136 | nnexpcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑎 )  ∈  ℕ ) | 
						
							| 138 | 137 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑎 )  ∈  ℕ ) | 
						
							| 139 | 100 138 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∈  ℙ  ∧  ( 𝑃 ↑ 𝑎 )  ∈  ℕ ) ) | 
						
							| 140 |  | pceq0 | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( 𝑃 ↑ 𝑎 )  ∈  ℕ )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  =  0  ↔  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑎 ) ) ) | 
						
							| 141 | 139 140 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  =  0  ↔  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑎 ) ) ) | 
						
							| 142 | 135 141 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  =  0 ) | 
						
							| 143 | 142 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  0  =  ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) ) ) | 
						
							| 144 | 143 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 0  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 0  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 146 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑐  ∈  ℕ0 ) | 
						
							| 147 |  | prmdvdsexpr | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝑃  ∈  ℙ  ∧  𝑐  ∈  ℕ0 )  →  ( 𝑄  ∥  ( 𝑃 ↑ 𝑐 )  →  𝑄  =  𝑃 ) ) | 
						
							| 148 | 100 130 146 147 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∥  ( 𝑃 ↑ 𝑐 )  →  𝑄  =  𝑃 ) ) | 
						
							| 149 | 129 148 | mtod | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑐 ) ) | 
						
							| 150 | 107 146 | nnexpcld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑐 )  ∈  ℕ ) | 
						
							| 151 | 100 150 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∈  ℙ  ∧  ( 𝑃 ↑ 𝑐 )  ∈  ℕ ) ) | 
						
							| 152 |  | pceq0 | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( 𝑃 ↑ 𝑐 )  ∈  ℕ )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  =  0  ↔  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑐 ) ) ) | 
						
							| 153 | 151 152 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  =  0  ↔  ¬  𝑄  ∥  ( 𝑃 ↑ 𝑐 ) ) ) | 
						
							| 154 | 149 153 | mpbird | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  =  0 ) | 
						
							| 155 | 154 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  0  =  ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) ) ) | 
						
							| 156 | 155 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 0  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 0  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 158 | 128 145 157 | 3netr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 159 | 107 | nnzd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑃  ∈  ℤ ) | 
						
							| 160 | 159 131 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃  ∈  ℤ  ∧  𝑎  ∈  ℕ0 ) ) | 
						
							| 161 |  | zexpcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑎  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑎 )  ∈  ℤ ) | 
						
							| 162 | 160 161 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑎 )  ∈  ℤ ) | 
						
							| 163 | 131 | nn0zd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝑎  ∈  ℤ ) | 
						
							| 164 | 108 110 163 | expne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑎 )  ≠  0 ) | 
						
							| 165 | 162 164 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑎 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑎 )  ≠  0 ) ) | 
						
							| 166 | 43 | nnzd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℤ ) | 
						
							| 167 | 166 113 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 )  ∈  ℤ  ∧  𝑏  ∈  ℕ0 ) ) | 
						
							| 168 |  | zexpcl | ⊢ ( ( ( 𝑁  /  𝑃 )  ∈  ℤ  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ ) | 
						
							| 169 | 167 168 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ ) | 
						
							| 170 | 104 108 110 | divcld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑁  /  𝑃 )  ∈  ℂ ) | 
						
							| 171 | 170 111 114 | expne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ≠  0 ) | 
						
							| 172 | 169 171 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ≠  0 ) ) | 
						
							| 173 | 100 165 172 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑎 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑎 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ≠  0 ) ) ) | 
						
							| 174 |  | pcmul | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑎 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑎 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ≠  0 ) )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 175 | 173 174 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 177 | 176 | eqcomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 178 | 150 | nnzd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑐 )  ∈  ℤ ) | 
						
							| 179 | 150 | nnne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑐 )  ≠  0 ) | 
						
							| 180 | 178 179 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑐 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑐 )  ≠  0 ) ) | 
						
							| 181 | 43 120 | nnexpcld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℕ ) | 
						
							| 182 | 181 | nnzd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ ) | 
						
							| 183 | 181 | nnne0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) | 
						
							| 184 | 182 183 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) ) | 
						
							| 185 | 100 180 184 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑐 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑐 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) ) ) | 
						
							| 186 |  | pcmul | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑐 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑐 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 187 | 185 186 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 188 | 187 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 189 | 188 | eqcomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( ( 𝑄  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑄  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 190 | 158 177 189 | 3netr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑄  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 191 | 29 33 190 | rspcedvd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  𝑏  ≠  𝑑 )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 192 | 2 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 193 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ∧  𝑝  =  𝑃 )  →  𝑝  =  𝑃 ) | 
						
							| 194 | 193 | oveq1d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 195 | 193 | oveq1d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ∧  𝑝  =  𝑃 )  →  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 196 | 194 195 | neeq12d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  ∧  𝑝  =  𝑃 )  →  ( ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 197 | 130 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 198 | 197 35 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 199 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑎  ∈  ℕ0 ) | 
						
							| 200 | 198 199 | nnexpcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃 ↑ 𝑎 )  ∈  ℕ ) | 
						
							| 201 | 197 200 | pccld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  ∈  ℕ0 ) | 
						
							| 202 | 201 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  ∈  ℂ ) | 
						
							| 203 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑐  ∈  ℕ0 ) | 
						
							| 204 | 198 203 | nnexpcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃 ↑ 𝑐 )  ∈  ℕ ) | 
						
							| 205 | 197 204 | pccld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  ∈  ℕ0 ) | 
						
							| 206 | 205 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  ∈  ℂ ) | 
						
							| 207 | 43 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑁  /  𝑃 )  ∈  ℕ ) | 
						
							| 208 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑏  ∈  ℕ0 ) | 
						
							| 209 | 207 208 | nnexpcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℕ ) | 
						
							| 210 | 197 209 | pccld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ0 ) | 
						
							| 211 | 210 | nn0cnd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℂ ) | 
						
							| 212 | 11 | adantl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑎  ≠  𝑐 ) | 
						
							| 213 | 197 199 | jca | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑎  ∈  ℕ0 ) ) | 
						
							| 214 |  | pcidlem | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑎  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  =  𝑎 ) | 
						
							| 215 | 213 214 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  =  𝑎 ) | 
						
							| 216 | 215 | eqcomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑎  =  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) ) ) | 
						
							| 217 | 197 203 | jca | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑐  ∈  ℕ0 ) ) | 
						
							| 218 |  | pcidlem | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑐  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  =  𝑐 ) | 
						
							| 219 | 217 218 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  =  𝑐 ) | 
						
							| 220 | 219 | eqcomd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑐  =  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) ) ) | 
						
							| 221 | 212 216 220 | 3netr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  ≠  ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) ) ) | 
						
							| 222 | 202 206 211 221 | addneintr2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 223 |  | eqidd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 224 |  | simprl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  𝑏  =  𝑑 ) | 
						
							| 225 | 224 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) | 
						
							| 226 | 225 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 227 | 226 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 228 | 222 223 227 | 3netr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 229 | 130 165 172 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑎 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑎 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ≠  0 ) ) ) | 
						
							| 230 |  | pcmul | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑎 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑎 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ≠  0 ) )  →  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 231 | 229 230 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 232 | 231 | eqcomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 233 | 232 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑎 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) ) | 
						
							| 234 | 130 180 184 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑃  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑐 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑐 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) ) ) | 
						
							| 235 |  | pcmul | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑐 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑐 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) )  →  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 236 | 235 | eqcomd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝑃 ↑ 𝑐 )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝑐 )  ≠  0 )  ∧  ( ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ∈  ℤ  ∧  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 )  ≠  0 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 237 | 234 236 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 238 | 237 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝑐 ) )  +  ( 𝑃  pCnt  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  =  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 239 | 228 233 238 | 3netr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑃  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 240 | 192 196 239 | rspcedvd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 241 | 191 240 | jaodan | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 242 |  | biidd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 243 | 242 | necon3abid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ¬  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 244 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  𝑏  ∈  ℕ0 ) | 
						
							| 245 | 42 244 | nnexpcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 )  ∈  ℕ ) | 
						
							| 246 | 137 245 | nnmulcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ ) | 
						
							| 247 | 246 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ ) | 
						
							| 248 | 247 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ ) | 
						
							| 249 | 248 | nnnn0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ0 ) | 
						
							| 250 | 150 181 | nnmulcld | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ∈  ℕ ) | 
						
							| 251 | 250 | nnnn0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ∈  ℕ0 ) | 
						
							| 252 | 249 251 | jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ0  ∧  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ∈  ℕ0 ) ) | 
						
							| 253 |  | pc11 | ⊢ ( ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ∈  ℕ0  ∧  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 254 | 252 253 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 255 | 254 | notbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ¬  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 256 | 243 255 | bitrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 257 |  | rexnal | ⊢ ( ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 258 | 257 | bicomi | ⊢ ( ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 259 | 258 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 260 | 256 259 | bitrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 261 |  | biidd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 262 | 261 | necon3bbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ¬  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 263 | 262 | rexbidv | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  =  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) )  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 264 | 260 263 | bitrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 265 | 264 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) )  →  ( ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) )  ↔  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) )  ≠  ( 𝑝  pCnt  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) ) | 
						
							| 266 | 241 265 | mpbird | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑏  ≠  𝑑  ∨  ( 𝑏  =  𝑑  ∧  𝑎  ≠  𝑐 ) ) )  →  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 267 | 28 266 | sylan2br | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) )  →  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 268 | 4 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  𝐸  =  ( 𝑘  ∈  ℕ0 ,  𝑙  ∈  ℕ0  ↦  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) ) ) ) | 
						
							| 269 |  | simprl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑎  ∧  𝑙  =  𝑏 ) )  →  𝑘  =  𝑎 ) | 
						
							| 270 | 269 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑎  ∧  𝑙  =  𝑏 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑎 ) ) | 
						
							| 271 |  | simprr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑎  ∧  𝑙  =  𝑏 ) )  →  𝑙  =  𝑏 ) | 
						
							| 272 | 271 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑎  ∧  𝑙  =  𝑏 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) | 
						
							| 273 | 270 272 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑎  ∧  𝑙  =  𝑏 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) | 
						
							| 274 | 268 273 131 113 248 | ovmpod | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑎 𝐸 𝑏 )  =  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) ) ) | 
						
							| 275 |  | simprl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑐  ∧  𝑙  =  𝑑 ) )  →  𝑘  =  𝑐 ) | 
						
							| 276 | 275 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑐  ∧  𝑙  =  𝑑 ) )  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑐 ) ) | 
						
							| 277 |  | simprr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑐  ∧  𝑙  =  𝑑 ) )  →  𝑙  =  𝑑 ) | 
						
							| 278 | 277 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑐  ∧  𝑙  =  𝑑 ) )  →  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 )  =  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) | 
						
							| 279 | 276 278 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ( 𝑘  =  𝑐  ∧  𝑙  =  𝑑 ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑙 ) )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 280 | 268 279 146 120 250 | ovmpod | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑐 𝐸 𝑑 )  =  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) | 
						
							| 281 | 274 280 | neeq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑎 𝐸 𝑏 )  ≠  ( 𝑐 𝐸 𝑑 )  ↔  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 282 | 281 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) )  →  ( ( 𝑎 𝐸 𝑏 )  ≠  ( 𝑐 𝐸 𝑑 )  ↔  ( ( 𝑃 ↑ 𝑎 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑏 ) )  ≠  ( ( 𝑃 ↑ 𝑐 )  ·  ( ( 𝑁  /  𝑃 ) ↑ 𝑑 ) ) ) ) | 
						
							| 283 | 267 282 | mpbird | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) )  →  ( 𝑎 𝐸 𝑏 )  ≠  ( 𝑐 𝐸 𝑑 ) ) | 
						
							| 284 | 283 | neneqd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  ∧  ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) )  →  ¬  ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 ) ) | 
						
							| 285 | 284 | ex | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ¬  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 )  →  ¬  ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 ) ) ) | 
						
							| 286 | 285 | con4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  ∧  𝑑  ∈  ℕ0 )  →  ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) | 
						
							| 287 | 286 | ralrimiva | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  𝑐  ∈  ℕ0 )  →  ∀ 𝑑  ∈  ℕ0 ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) | 
						
							| 288 | 287 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ∀ 𝑐  ∈  ℕ0 ∀ 𝑑  ∈  ℕ0 ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) | 
						
							| 289 | 288 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ∀ 𝑑  ∈  ℕ0 ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) | 
						
							| 290 | 289 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℕ0 ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ∀ 𝑑  ∈  ℕ0 ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) | 
						
							| 291 | 8 290 | jca | ⊢ ( 𝜑  →  ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ  ∧  ∀ 𝑎  ∈  ℕ0 ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ∀ 𝑑  ∈  ℕ0 ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) ) | 
						
							| 292 |  | f1opr | ⊢ ( 𝐸 : ( ℕ0  ×  ℕ0 ) –1-1→ ℕ  ↔  ( 𝐸 : ( ℕ0  ×  ℕ0 ) ⟶ ℕ  ∧  ∀ 𝑎  ∈  ℕ0 ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ∀ 𝑑  ∈  ℕ0 ( ( 𝑎 𝐸 𝑏 )  =  ( 𝑐 𝐸 𝑑 )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) ) ) | 
						
							| 293 | 291 292 | sylibr | ⊢ ( 𝜑  →  𝐸 : ( ℕ0  ×  ℕ0 ) –1-1→ ℕ ) |