| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c2p2.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
aks6d1c2p2.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 3 |
|
aks6d1c2p2.3 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 4 |
|
aks6d1c2p2.4 |
⊢ 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) |
| 5 |
|
aks6d1c2p2.5 |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
| 6 |
|
aks6d1c2p2.6 |
⊢ ( 𝜑 → 𝑄 ∥ 𝑁 ) |
| 7 |
|
aks6d1c2p2.7 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
| 8 |
1 2 3 4
|
aks6d1c2p1 |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ) |
| 9 |
|
neneq |
⊢ ( 𝑏 ≠ 𝑑 → ¬ 𝑏 = 𝑑 ) |
| 10 |
9
|
orcd |
⊢ ( 𝑏 ≠ 𝑑 → ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) → 𝑎 ≠ 𝑐 ) |
| 12 |
11
|
neneqd |
⊢ ( ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) → ¬ 𝑎 = 𝑐 ) |
| 13 |
12
|
olcd |
⊢ ( ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) → ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) ) |
| 14 |
10 13
|
jaoi |
⊢ ( ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) ) |
| 15 |
|
neqne |
⊢ ( ¬ 𝑏 = 𝑑 → 𝑏 ≠ 𝑑 ) |
| 16 |
15
|
orcd |
⊢ ( ¬ 𝑏 = 𝑑 → ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) |
| 17 |
|
neqne |
⊢ ( ¬ 𝑎 = 𝑐 → 𝑎 ≠ 𝑐 ) |
| 18 |
17
|
anim1ci |
⊢ ( ( ¬ 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) |
| 19 |
18
|
olcd |
⊢ ( ( ¬ 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) |
| 20 |
16
|
adantl |
⊢ ( ( ¬ 𝑎 = 𝑐 ∧ ¬ 𝑏 = 𝑑 ) → ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) |
| 21 |
19 20
|
pm2.61dan |
⊢ ( ¬ 𝑎 = 𝑐 → ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) |
| 22 |
16 21
|
jaoi |
⊢ ( ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) → ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) |
| 23 |
14 22
|
impbii |
⊢ ( ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ↔ ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) ) |
| 24 |
|
orcom |
⊢ ( ( ¬ 𝑏 = 𝑑 ∨ ¬ 𝑎 = 𝑐 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) |
| 25 |
23 24
|
bitri |
⊢ ( ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) |
| 26 |
|
ianor |
⊢ ( ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ↔ ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ) |
| 27 |
26
|
bicomi |
⊢ ( ( ¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑 ) ↔ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) |
| 28 |
25 27
|
bitri |
⊢ ( ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ↔ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) |
| 29 |
5
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝑄 ∈ ℙ ) |
| 30 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) ∧ 𝑝 = 𝑄 ) → 𝑝 = 𝑄 ) |
| 31 |
30
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) ∧ 𝑝 = 𝑄 ) → ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 32 |
30
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) ∧ 𝑝 = 𝑄 ) → ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 33 |
31 32
|
neeq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) ∧ 𝑝 = 𝑄 ) → ( ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 34 |
|
0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 0 ∈ ℂ ) |
| 35 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 36 |
2 35
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 37 |
1 36
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ ) ) |
| 38 |
|
nndivdvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℕ ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ↔ ( 𝑁 / 𝑃 ) ∈ ℕ ) ) |
| 40 |
3 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 45 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝑏 ∈ ℕ0 ) |
| 46 |
44 45
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℕ ) |
| 47 |
29 46
|
pccld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ) |
| 48 |
47
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℂ ) |
| 49 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝑑 ∈ ℕ0 ) |
| 50 |
44 49
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℕ ) |
| 51 |
29 50
|
pccld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 ) |
| 52 |
51
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℂ ) |
| 53 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝑏 ≠ 𝑑 ) |
| 54 |
45
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝑏 ∈ ℂ ) |
| 55 |
49
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝑑 ∈ ℂ ) |
| 56 |
29 44
|
pccld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ0 ) |
| 57 |
56
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℂ ) |
| 58 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → 𝜑 ) |
| 59 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 60 |
36
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 61 |
36
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 62 |
59 60 61
|
divcan2d |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑁 / 𝑃 ) ) = 𝑁 ) |
| 63 |
62
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
| 64 |
63
|
breq2d |
⊢ ( 𝜑 → ( 𝑄 ∥ 𝑁 ↔ 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) ) |
| 65 |
6 64
|
mpbid |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ) |
| 66 |
36
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 67 |
40
|
nnzd |
⊢ ( 𝜑 → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 68 |
|
euclemma |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ ( 𝑁 / 𝑃 ) ∈ ℤ ) → ( 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↔ ( 𝑄 ∥ 𝑃 ∨ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) ) |
| 69 |
5 66 67 68
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) ↔ ( 𝑄 ∥ 𝑃 ∨ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) ) |
| 70 |
69
|
biimpd |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑃 · ( 𝑁 / 𝑃 ) ) → ( 𝑄 ∥ 𝑃 ∨ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) ) |
| 71 |
65 70
|
mpd |
⊢ ( 𝜑 → ( 𝑄 ∥ 𝑃 ∨ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) |
| 72 |
|
necom |
⊢ ( 𝑃 ≠ 𝑄 ↔ 𝑄 ≠ 𝑃 ) |
| 73 |
72
|
imbi2i |
⊢ ( ( 𝜑 → 𝑃 ≠ 𝑄 ) ↔ ( 𝜑 → 𝑄 ≠ 𝑃 ) ) |
| 74 |
7 73
|
mpbi |
⊢ ( 𝜑 → 𝑄 ≠ 𝑃 ) |
| 75 |
74
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑄 = 𝑃 ) |
| 76 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 77 |
|
prmgt1 |
⊢ ( 𝑄 ∈ ℙ → 1 < 𝑄 ) |
| 78 |
5 77
|
syl |
⊢ ( 𝜑 → 1 < 𝑄 ) |
| 79 |
76 78
|
ltned |
⊢ ( 𝜑 → 1 ≠ 𝑄 ) |
| 80 |
79
|
necomd |
⊢ ( 𝜑 → 𝑄 ≠ 1 ) |
| 81 |
80
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑄 = 1 ) |
| 82 |
75 81
|
jca |
⊢ ( 𝜑 → ( ¬ 𝑄 = 𝑃 ∧ ¬ 𝑄 = 1 ) ) |
| 83 |
|
pm4.56 |
⊢ ( ( ¬ 𝑄 = 𝑃 ∧ ¬ 𝑄 = 1 ) ↔ ¬ ( 𝑄 = 𝑃 ∨ 𝑄 = 1 ) ) |
| 84 |
82 83
|
sylib |
⊢ ( 𝜑 → ¬ ( 𝑄 = 𝑃 ∨ 𝑄 = 1 ) ) |
| 85 |
|
prmnn |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℕ ) |
| 86 |
5 85
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
| 87 |
|
dvdsprime |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℕ ) → ( 𝑄 ∥ 𝑃 ↔ ( 𝑄 = 𝑃 ∨ 𝑄 = 1 ) ) ) |
| 88 |
2 86 87
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∥ 𝑃 ↔ ( 𝑄 = 𝑃 ∨ 𝑄 = 1 ) ) ) |
| 89 |
84 88
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑄 ∥ 𝑃 ) |
| 90 |
71 89
|
orcnd |
⊢ ( 𝜑 → 𝑄 ∥ ( 𝑁 / 𝑃 ) ) |
| 91 |
5 40
|
jca |
⊢ ( 𝜑 → ( 𝑄 ∈ ℙ ∧ ( 𝑁 / 𝑃 ) ∈ ℕ ) ) |
| 92 |
|
pcelnn |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑁 / 𝑃 ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ ↔ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) |
| 93 |
91 92
|
syl |
⊢ ( 𝜑 → ( ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ ↔ 𝑄 ∥ ( 𝑁 / 𝑃 ) ) ) |
| 94 |
90 93
|
mpbird |
⊢ ( 𝜑 → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ ) |
| 95 |
58 94
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ∈ ℕ ) |
| 96 |
95
|
nnne0d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ≠ 0 ) |
| 97 |
54 55 57 96
|
mulcan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ↔ 𝑏 = 𝑑 ) ) |
| 98 |
97
|
necon3bid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ≠ ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ↔ 𝑏 ≠ 𝑑 ) ) |
| 99 |
53 98
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ≠ ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 100 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑄 ∈ ℙ ) |
| 101 |
|
nnq |
⊢ ( ( 𝑁 / 𝑃 ) ∈ ℕ → ( 𝑁 / 𝑃 ) ∈ ℚ ) |
| 102 |
43 101
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℚ ) |
| 103 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
| 104 |
103
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 105 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 106 |
105
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 107 |
106
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 108 |
107
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
| 109 |
103
|
nnne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑁 ≠ 0 ) |
| 110 |
107
|
nnne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
| 111 |
104 108 109 110
|
divne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ≠ 0 ) |
| 112 |
102 111
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ) |
| 113 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 ) |
| 114 |
113
|
nn0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑏 ∈ ℤ ) |
| 115 |
100 112 114
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑏 ∈ ℤ ) ) |
| 116 |
|
pcexp |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑏 ∈ ℤ ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 117 |
115 116
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 118 |
117
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 119 |
118
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑏 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) = ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) |
| 120 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℕ0 ) |
| 121 |
120
|
nn0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℤ ) |
| 122 |
100 112 121
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑑 ∈ ℤ ) ) |
| 123 |
|
pcexp |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑁 / 𝑃 ) ∈ ℚ ∧ ( 𝑁 / 𝑃 ) ≠ 0 ) ∧ 𝑑 ∈ ℤ ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 124 |
122 123
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 125 |
124
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) = ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) ) |
| 126 |
125
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑑 · ( 𝑄 pCnt ( 𝑁 / 𝑃 ) ) ) = ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 127 |
99 119 126
|
3netr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 128 |
34 48 52 127
|
addneintrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 129 |
75
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ¬ 𝑄 = 𝑃 ) |
| 130 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
| 131 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 ) |
| 132 |
|
prmdvdsexpr |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃 ↑ 𝑎 ) → 𝑄 = 𝑃 ) ) |
| 133 |
100 130 131 132
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃 ↑ 𝑎 ) → 𝑄 = 𝑃 ) ) |
| 134 |
133
|
con3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ 𝑄 = 𝑃 → ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑎 ) ) ) |
| 135 |
129 134
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑎 ) ) |
| 136 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 ) |
| 137 |
106 136
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑎 ) ∈ ℕ ) |
| 138 |
137
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑎 ) ∈ ℕ ) |
| 139 |
100 138
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( 𝑃 ↑ 𝑎 ) ∈ ℕ ) ) |
| 140 |
|
pceq0 |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑃 ↑ 𝑎 ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑎 ) ) ) |
| 141 |
139 140
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑎 ) ) ) |
| 142 |
135 141
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) = 0 ) |
| 143 |
142
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 0 = ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) ) |
| 144 |
143
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 145 |
144
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 146 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑐 ∈ ℕ0 ) |
| 147 |
|
prmdvdsexpr |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑐 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃 ↑ 𝑐 ) → 𝑄 = 𝑃 ) ) |
| 148 |
100 130 146 147
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∥ ( 𝑃 ↑ 𝑐 ) → 𝑄 = 𝑃 ) ) |
| 149 |
129 148
|
mtod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑐 ) ) |
| 150 |
107 146
|
nnexpcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑐 ) ∈ ℕ ) |
| 151 |
100 150
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( 𝑃 ↑ 𝑐 ) ∈ ℕ ) ) |
| 152 |
|
pceq0 |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑃 ↑ 𝑐 ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑐 ) ) ) |
| 153 |
151 152
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃 ↑ 𝑐 ) ) ) |
| 154 |
149 153
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) = 0 ) |
| 155 |
154
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 0 = ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) ) |
| 156 |
155
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 157 |
156
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 0 + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 158 |
128 145 157
|
3netr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 159 |
107
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑃 ∈ ℤ ) |
| 160 |
159 131
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ∈ ℤ ∧ 𝑎 ∈ ℕ0 ) ) |
| 161 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑎 ) ∈ ℤ ) |
| 162 |
160 161
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑎 ) ∈ ℤ ) |
| 163 |
131
|
nn0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑎 ∈ ℤ ) |
| 164 |
108 110 163
|
expne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑎 ) ≠ 0 ) |
| 165 |
162 164
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑎 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑎 ) ≠ 0 ) ) |
| 166 |
43
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℤ ) |
| 167 |
166 113
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑏 ∈ ℕ0 ) ) |
| 168 |
|
zexpcl |
⊢ ( ( ( 𝑁 / 𝑃 ) ∈ ℤ ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ) |
| 169 |
167 168
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ) |
| 170 |
104 108 110
|
divcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑁 / 𝑃 ) ∈ ℂ ) |
| 171 |
170 111 114
|
expne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) |
| 172 |
169 171
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) |
| 173 |
100 165 172
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑎 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) ) |
| 174 |
|
pcmul |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑎 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 175 |
173 174
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 176 |
175
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 177 |
176
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 178 |
150
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑐 ) ∈ ℤ ) |
| 179 |
150
|
nnne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑐 ) ≠ 0 ) |
| 180 |
178 179
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑐 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑐 ) ≠ 0 ) ) |
| 181 |
43 120
|
nnexpcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℕ ) |
| 182 |
181
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ) |
| 183 |
181
|
nnne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) |
| 184 |
182 183
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) |
| 185 |
100 180 184
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑐 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) ) |
| 186 |
|
pcmul |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑐 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 187 |
185 186
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 188 |
187
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 189 |
188
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( ( 𝑄 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑄 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 190 |
158 177 189
|
3netr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑄 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 191 |
29 33 190
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ≠ 𝑑 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 192 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑃 ∈ ℙ ) |
| 193 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
| 194 |
193
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 195 |
193
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 196 |
194 195
|
neeq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 197 |
130
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑃 ∈ ℙ ) |
| 198 |
197 35
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑃 ∈ ℕ ) |
| 199 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑎 ∈ ℕ0 ) |
| 200 |
198 199
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 ↑ 𝑎 ) ∈ ℕ ) |
| 201 |
197 200
|
pccld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) ∈ ℕ0 ) |
| 202 |
201
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) ∈ ℂ ) |
| 203 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑐 ∈ ℕ0 ) |
| 204 |
198 203
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 ↑ 𝑐 ) ∈ ℕ ) |
| 205 |
197 204
|
pccld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) ∈ ℕ0 ) |
| 206 |
205
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) ∈ ℂ ) |
| 207 |
43
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑁 / 𝑃 ) ∈ ℕ ) |
| 208 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑏 ∈ ℕ0 ) |
| 209 |
207 208
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℕ ) |
| 210 |
197 209
|
pccld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ) |
| 211 |
210
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℂ ) |
| 212 |
11
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑎 ≠ 𝑐 ) |
| 213 |
197 199
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0 ) ) |
| 214 |
|
pcidlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) = 𝑎 ) |
| 215 |
213 214
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) = 𝑎 ) |
| 216 |
215
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑎 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) ) |
| 217 |
197 203
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 ∈ ℙ ∧ 𝑐 ∈ ℕ0 ) ) |
| 218 |
|
pcidlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑐 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) = 𝑐 ) |
| 219 |
217 218
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) = 𝑐 ) |
| 220 |
219
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑐 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) ) |
| 221 |
212 216 220
|
3netr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) ≠ ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) ) |
| 222 |
202 206 211 221
|
addneintr2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 223 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 224 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → 𝑏 = 𝑑 ) |
| 225 |
224
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) |
| 226 |
225
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 227 |
226
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 228 |
222 223 227
|
3netr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 229 |
130 165 172
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑎 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) ) |
| 230 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑎 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑎 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 231 |
229 230
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 232 |
231
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 233 |
232
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑎 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ) |
| 234 |
130 180 184
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑃 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑐 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) ) |
| 235 |
|
pcmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑐 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 236 |
235
|
eqcomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝑃 ↑ 𝑐 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑐 ) ≠ 0 ) ∧ ( ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ≠ 0 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 237 |
234 236
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 238 |
237
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝑐 ) ) + ( 𝑃 pCnt ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) = ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 239 |
228 233 238
|
3netr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑃 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 240 |
192 196 239
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 241 |
191 240
|
jaodan |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 242 |
|
biidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 243 |
242
|
necon3abid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ¬ ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 244 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 ) |
| 245 |
42 244
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ∈ ℕ ) |
| 246 |
137 245
|
nnmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ ) |
| 247 |
246
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ ) |
| 248 |
247
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ ) |
| 249 |
248
|
nnnn0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ) |
| 250 |
150 181
|
nnmulcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ ) |
| 251 |
250
|
nnnn0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 ) |
| 252 |
249 251
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ∧ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 ) ) |
| 253 |
|
pc11 |
⊢ ( ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ∈ ℕ0 ∧ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 254 |
252 253
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 255 |
254
|
notbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 256 |
243 255
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 257 |
|
rexnal |
⊢ ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 258 |
257
|
bicomi |
⊢ ( ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 259 |
258
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 260 |
256 259
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 261 |
|
biidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 262 |
261
|
necon3bbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 263 |
262
|
rexbidv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) = ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 264 |
260 263
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 265 |
264
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) → ( ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) ≠ ( 𝑝 pCnt ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) ) |
| 266 |
241 265
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑏 ≠ 𝑑 ∨ ( 𝑏 = 𝑑 ∧ 𝑎 ≠ 𝑐 ) ) ) → ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 267 |
28 266
|
sylan2br |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 268 |
4
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝐸 = ( 𝑘 ∈ ℕ0 , 𝑙 ∈ ℕ0 ↦ ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) ) ) |
| 269 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎 ∧ 𝑙 = 𝑏 ) ) → 𝑘 = 𝑎 ) |
| 270 |
269
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎 ∧ 𝑙 = 𝑏 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑎 ) ) |
| 271 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎 ∧ 𝑙 = 𝑏 ) ) → 𝑙 = 𝑏 ) |
| 272 |
271
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎 ∧ 𝑙 = 𝑏 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) |
| 273 |
270 272
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑎 ∧ 𝑙 = 𝑏 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) |
| 274 |
268 273 131 113 248
|
ovmpod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑎 𝐸 𝑏 ) = ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ) |
| 275 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐 ∧ 𝑙 = 𝑑 ) ) → 𝑘 = 𝑐 ) |
| 276 |
275
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐 ∧ 𝑙 = 𝑑 ) ) → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 𝑐 ) ) |
| 277 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐 ∧ 𝑙 = 𝑑 ) ) → 𝑙 = 𝑑 ) |
| 278 |
277
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐 ∧ 𝑙 = 𝑑 ) ) → ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) = ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) |
| 279 |
276 278
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑘 = 𝑐 ∧ 𝑙 = 𝑑 ) ) → ( ( 𝑃 ↑ 𝑘 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑙 ) ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 280 |
268 279 146 120 250
|
ovmpod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝑐 𝐸 𝑑 ) = ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) |
| 281 |
274 280
|
neeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑎 𝐸 𝑏 ) ≠ ( 𝑐 𝐸 𝑑 ) ↔ ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 282 |
281
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( ( 𝑎 𝐸 𝑏 ) ≠ ( 𝑐 𝐸 𝑑 ) ↔ ( ( 𝑃 ↑ 𝑎 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑏 ) ) ≠ ( ( 𝑃 ↑ 𝑐 ) · ( ( 𝑁 / 𝑃 ) ↑ 𝑑 ) ) ) ) |
| 283 |
267 282
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ( 𝑎 𝐸 𝑏 ) ≠ ( 𝑐 𝐸 𝑑 ) ) |
| 284 |
283
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) ∧ ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) → ¬ ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) ) |
| 285 |
284
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ¬ ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) → ¬ ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) ) ) |
| 286 |
285
|
con4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
| 287 |
286
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
| 288 |
287
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) ∧ 𝑏 ∈ ℕ0 ) → ∀ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
| 289 |
288
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
| 290 |
289
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℕ0 ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) |
| 291 |
8 290
|
jca |
⊢ ( 𝜑 → ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ∧ ∀ 𝑎 ∈ ℕ0 ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) ) |
| 292 |
|
f1opr |
⊢ ( 𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ ↔ ( 𝐸 : ( ℕ0 × ℕ0 ) ⟶ ℕ ∧ ∀ 𝑎 ∈ ℕ0 ∀ 𝑏 ∈ ℕ0 ∀ 𝑐 ∈ ℕ0 ∀ 𝑑 ∈ ℕ0 ( ( 𝑎 𝐸 𝑏 ) = ( 𝑐 𝐸 𝑑 ) → ( 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ) ) ) ) |
| 293 |
291 292
|
sylibr |
⊢ ( 𝜑 → 𝐸 : ( ℕ0 × ℕ0 ) –1-1→ ℕ ) |