| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( 0 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) = ( 0 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = - 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ - 𝑦 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑥 = - 𝑦 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 20 |
18 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 21 |
|
pc1 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 1 ) = 0 ) |
| 23 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 25 |
24
|
exp0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝐴 ↑ 0 ) = 1 ) |
| 26 |
25
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) = ( 𝑃 pCnt 1 ) ) |
| 27 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
| 28 |
27
|
zcnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℂ ) |
| 29 |
28
|
mul02d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 0 · ( 𝑃 pCnt 𝐴 ) ) = 0 ) |
| 30 |
22 26 29
|
3eqtr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) = ( 0 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 31 |
|
oveq1 |
⊢ ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
| 32 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
| 33 |
24 32
|
sylan |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( 𝑃 pCnt ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) ) |
| 35 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
| 36 |
|
simplrl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ ℚ ) |
| 37 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
| 38 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
| 40 |
|
qexpclz |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( 𝐴 ↑ 𝑦 ) ∈ ℚ ) |
| 41 |
36 37 39 40
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑦 ) ∈ ℚ ) |
| 42 |
24
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 43 |
42 37 39
|
expne0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑦 ) ≠ 0 ) |
| 44 |
|
pcqmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 ↑ 𝑦 ) ∈ ℚ ∧ ( 𝐴 ↑ 𝑦 ) ≠ 0 ) ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) = ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
| 45 |
35 41 43 36 37 44
|
syl122anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) = ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
| 46 |
34 45
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
| 47 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
| 48 |
47
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℂ ) |
| 49 |
28
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt 𝐴 ) ∈ ℂ ) |
| 50 |
48 49
|
adddirp1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
| 51 |
46 50
|
eqeq12d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ↔ ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 52 |
31 51
|
imbitrrid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 53 |
52
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 54 |
|
negeq |
⊢ ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 55 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
| 56 |
|
expneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑦 ) = ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) |
| 57 |
24 55 56
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑ - 𝑦 ) = ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) |
| 58 |
57
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( 𝑃 pCnt ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) ) |
| 59 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
| 60 |
55 41
|
sylan2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑ 𝑦 ) ∈ ℚ ) |
| 61 |
55 43
|
sylan2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑ 𝑦 ) ≠ 0 ) |
| 62 |
|
pcrec |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 ↑ 𝑦 ) ∈ ℚ ∧ ( 𝐴 ↑ 𝑦 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) = - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
| 63 |
59 60 61 62
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) = - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
| 64 |
58 63
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
| 65 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 66 |
|
mulneg1 |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℂ ) → ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 67 |
65 28 66
|
syl2anr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
| 68 |
64 67
|
eqeq12d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ↔ - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 69 |
54 68
|
imbitrrid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 70 |
69
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑦 ∈ ℕ → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 71 |
4 8 12 16 20 30 53 70
|
zindd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑁 ∈ ℤ → ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 72 |
71
|
3impia |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) |