| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
oveq1 |
|
| 4 |
2 3
|
eqeq12d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
oveq1 |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
oveq1 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
oveq1 |
|
| 20 |
18 19
|
eqeq12d |
|
| 21 |
|
pc1 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
qcn |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
24
|
exp0d |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
pcqcl |
|
| 28 |
27
|
zcnd |
|
| 29 |
28
|
mul02d |
|
| 30 |
22 26 29
|
3eqtr4d |
|
| 31 |
|
oveq1 |
|
| 32 |
|
expp1 |
|
| 33 |
24 32
|
sylan |
|
| 34 |
33
|
oveq2d |
|
| 35 |
|
simpll |
|
| 36 |
|
simplrl |
|
| 37 |
|
simplrr |
|
| 38 |
|
nn0z |
|
| 39 |
38
|
adantl |
|
| 40 |
|
qexpclz |
|
| 41 |
36 37 39 40
|
syl3anc |
|
| 42 |
24
|
adantr |
|
| 43 |
42 37 39
|
expne0d |
|
| 44 |
|
pcqmul |
|
| 45 |
35 41 43 36 37 44
|
syl122anc |
|
| 46 |
34 45
|
eqtrd |
|
| 47 |
|
nn0cn |
|
| 48 |
47
|
adantl |
|
| 49 |
28
|
adantr |
|
| 50 |
48 49
|
adddirp1d |
|
| 51 |
46 50
|
eqeq12d |
|
| 52 |
31 51
|
imbitrrid |
|
| 53 |
52
|
ex |
|
| 54 |
|
negeq |
|
| 55 |
|
nnnn0 |
|
| 56 |
|
expneg |
|
| 57 |
24 55 56
|
syl2an |
|
| 58 |
57
|
oveq2d |
|
| 59 |
|
simpll |
|
| 60 |
55 41
|
sylan2 |
|
| 61 |
55 43
|
sylan2 |
|
| 62 |
|
pcrec |
|
| 63 |
59 60 61 62
|
syl12anc |
|
| 64 |
58 63
|
eqtrd |
|
| 65 |
|
nncn |
|
| 66 |
|
mulneg1 |
|
| 67 |
65 28 66
|
syl2anr |
|
| 68 |
64 67
|
eqeq12d |
|
| 69 |
54 68
|
imbitrrid |
|
| 70 |
69
|
ex |
|
| 71 |
4 8 12 16 20 30 53 70
|
zindd |
|
| 72 |
71
|
3impia |
|