Metamath Proof Explorer


Theorem pcxnn0cl

Description: Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024)

Ref Expression
Assertion pcxnn0cl PNPpCntN0*

Proof

Step Hyp Ref Expression
1 pc0 PPpCnt0=+∞
2 pnf0xnn0 +∞0*
3 1 2 eqeltrdi PPpCnt00*
4 3 adantr PNPpCnt00*
5 oveq2 N=0PpCntN=PpCnt0
6 5 eleq1d N=0PpCntN0*PpCnt00*
7 4 6 syl5ibrcom PNN=0PpCntN0*
8 pczcl PNN0PpCntN0
9 8 nn0xnn0d PNN0PpCntN0*
10 9 expr PNN0PpCntN0*
11 7 10 pm2.61dne PNPpCntN0*