Metamath Proof Explorer


Theorem pc0

Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion pc0 PPpCnt0=+∞

Proof

Step Hyp Ref Expression
1 0z 0
2 zq 00
3 1 2 ax-mp 0
4 iftrue r=0ifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<=+∞
5 4 adantl p=Pr=0ifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<=+∞
6 df-pc pCnt=p,rifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<
7 pnfex +∞V
8 5 6 7 ovmpoa P0PpCnt0=+∞
9 3 8 mpan2 PPpCnt0=+∞