| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
⊢ 0 ∈ ℤ |
| 2 |
|
zq |
⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) |
| 3 |
1 2
|
ax-mp |
⊢ 0 ∈ ℚ |
| 4 |
|
iftrue |
⊢ ( 𝑟 = 0 → if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) = +∞ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 0 ) → if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) = +∞ ) |
| 6 |
|
df-pc |
⊢ pCnt = ( 𝑝 ∈ ℙ , 𝑟 ∈ ℚ ↦ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) ) |
| 7 |
|
pnfex |
⊢ +∞ ∈ V |
| 8 |
5 6 7
|
ovmpoa |
⊢ ( ( 𝑃 ∈ ℙ ∧ 0 ∈ ℚ ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 9 |
3 8
|
mpan2 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |