Metamath Proof Explorer


Theorem pcrec

Description: Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion pcrec PAA0PpCnt1A=PpCntA

Proof

Step Hyp Ref Expression
1 1z 1
2 zq 11
3 1 2 ax-mp 1
4 ax-1ne0 10
5 3 4 pm3.2i 110
6 pcqdiv P110AA0PpCnt1A=PpCnt1PpCntA
7 5 6 mp3an2 PAA0PpCnt1A=PpCnt1PpCntA
8 pc1 PPpCnt1=0
9 8 adantr PAA0PpCnt1=0
10 9 oveq1d PAA0PpCnt1PpCntA=0PpCntA
11 7 10 eqtrd PAA0PpCnt1A=0PpCntA
12 df-neg PpCntA=0PpCntA
13 11 12 eqtr4di PAA0PpCnt1A=PpCntA