Metamath Proof Explorer


Theorem pcqdiv

Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion pcqdiv PAA0BB0PpCntAB=PpCntAPpCntB

Proof

Step Hyp Ref Expression
1 simp2l PAA0BB0A
2 qcn AA
3 1 2 syl PAA0BB0A
4 simp3l PAA0BB0B
5 qcn BB
6 4 5 syl PAA0BB0B
7 simp3r PAA0BB0B0
8 3 6 7 divcan1d PAA0BB0ABB=A
9 8 oveq2d PAA0BB0PpCntABB=PpCntA
10 simp1 PAA0BB0P
11 qdivcl ABB0AB
12 1 4 7 11 syl3anc PAA0BB0AB
13 simp2r PAA0BB0A0
14 3 6 13 7 divne0d PAA0BB0AB0
15 pcqmul PABAB0BB0PpCntABB=PpCntAB+PpCntB
16 10 12 14 4 7 15 syl122anc PAA0BB0PpCntABB=PpCntAB+PpCntB
17 9 16 eqtr3d PAA0BB0PpCntA=PpCntAB+PpCntB
18 17 oveq1d PAA0BB0PpCntAPpCntB=PpCntAB+PpCntB-PpCntB
19 pcqcl PABAB0PpCntAB
20 10 12 14 19 syl12anc PAA0BB0PpCntAB
21 20 zcnd PAA0BB0PpCntAB
22 pcqcl PBB0PpCntB
23 22 3adant2 PAA0BB0PpCntB
24 23 zcnd PAA0BB0PpCntB
25 21 24 pncand PAA0BB0PpCntAB+PpCntB-PpCntB=PpCntAB
26 18 25 eqtr2d PAA0BB0PpCntAB=PpCntAPpCntB