| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn0 |
|- 4 e. NN0 |
| 2 |
|
2z |
|- 2 e. ZZ |
| 3 |
|
bcpasc |
|- ( ( 4 e. NN0 /\ 2 e. ZZ ) -> ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 + 1 ) _C 2 ) ) |
| 4 |
1 2 3
|
mp2an |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 + 1 ) _C 2 ) |
| 5 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
| 6 |
5
|
oveq1i |
|- ( ( 4 + 1 ) _C 2 ) = ( 5 _C 2 ) |
| 7 |
4 6
|
eqtri |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( 5 _C 2 ) |
| 8 |
7
|
eqcomi |
|- ( 5 _C 2 ) = ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) |
| 9 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 10 |
9
|
oveq2i |
|- ( 4 _C ( 2 - 1 ) ) = ( 4 _C 1 ) |
| 11 |
10
|
oveq2i |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 _C 2 ) + ( 4 _C 1 ) ) |
| 12 |
|
4bc2eq6 |
|- ( 4 _C 2 ) = 6 |
| 13 |
|
bcn1 |
|- ( 4 e. NN0 -> ( 4 _C 1 ) = 4 ) |
| 14 |
1 13
|
ax-mp |
|- ( 4 _C 1 ) = 4 |
| 15 |
12 14
|
oveq12i |
|- ( ( 4 _C 2 ) + ( 4 _C 1 ) ) = ( 6 + 4 ) |
| 16 |
11 15
|
eqtri |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( 6 + 4 ) |
| 17 |
|
6p4e10 |
|- ( 6 + 4 ) = ; 1 0 |
| 18 |
8 16 17
|
3eqtri |
|- ( 5 _C 2 ) = ; 1 0 |