| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 2 |  | 2z |  |-  2 e. ZZ | 
						
							| 3 |  | bcpasc |  |-  ( ( 4 e. NN0 /\ 2 e. ZZ ) -> ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 + 1 ) _C 2 ) ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 + 1 ) _C 2 ) | 
						
							| 5 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 6 | 5 | oveq1i |  |-  ( ( 4 + 1 ) _C 2 ) = ( 5 _C 2 ) | 
						
							| 7 | 4 6 | eqtri |  |-  ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( 5 _C 2 ) | 
						
							| 8 | 7 | eqcomi |  |-  ( 5 _C 2 ) = ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) | 
						
							| 9 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 10 | 9 | oveq2i |  |-  ( 4 _C ( 2 - 1 ) ) = ( 4 _C 1 ) | 
						
							| 11 | 10 | oveq2i |  |-  ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 _C 2 ) + ( 4 _C 1 ) ) | 
						
							| 12 |  | 4bc2eq6 |  |-  ( 4 _C 2 ) = 6 | 
						
							| 13 |  | bcn1 |  |-  ( 4 e. NN0 -> ( 4 _C 1 ) = 4 ) | 
						
							| 14 | 1 13 | ax-mp |  |-  ( 4 _C 1 ) = 4 | 
						
							| 15 | 12 14 | oveq12i |  |-  ( ( 4 _C 2 ) + ( 4 _C 1 ) ) = ( 6 + 4 ) | 
						
							| 16 | 11 15 | eqtri |  |-  ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( 6 + 4 ) | 
						
							| 17 |  | 6p4e10 |  |-  ( 6 + 4 ) = ; 1 0 | 
						
							| 18 | 8 16 17 | 3eqtri |  |-  ( 5 _C 2 ) = ; 1 0 |