Step |
Hyp |
Ref |
Expression |
1 |
|
4nn0 |
|- 4 e. NN0 |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
bcpasc |
|- ( ( 4 e. NN0 /\ 2 e. ZZ ) -> ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 + 1 ) _C 2 ) ) |
4 |
1 2 3
|
mp2an |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 + 1 ) _C 2 ) |
5 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
6 |
5
|
oveq1i |
|- ( ( 4 + 1 ) _C 2 ) = ( 5 _C 2 ) |
7 |
4 6
|
eqtri |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( 5 _C 2 ) |
8 |
7
|
eqcomi |
|- ( 5 _C 2 ) = ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) |
9 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
10 |
9
|
oveq2i |
|- ( 4 _C ( 2 - 1 ) ) = ( 4 _C 1 ) |
11 |
10
|
oveq2i |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( ( 4 _C 2 ) + ( 4 _C 1 ) ) |
12 |
|
4bc2eq6 |
|- ( 4 _C 2 ) = 6 |
13 |
|
bcn1 |
|- ( 4 e. NN0 -> ( 4 _C 1 ) = 4 ) |
14 |
1 13
|
ax-mp |
|- ( 4 _C 1 ) = 4 |
15 |
12 14
|
oveq12i |
|- ( ( 4 _C 2 ) + ( 4 _C 1 ) ) = ( 6 + 4 ) |
16 |
11 15
|
eqtri |
|- ( ( 4 _C 2 ) + ( 4 _C ( 2 - 1 ) ) ) = ( 6 + 4 ) |
17 |
|
6p4e10 |
|- ( 6 + 4 ) = ; 1 0 |
18 |
8 16 17
|
3eqtri |
|- ( 5 _C 2 ) = ; 1 0 |