| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 2 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 3 |  | bcpasc | ⊢ ( ( 4  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( ( 4 C 2 )  +  ( 4 C ( 2  −  1 ) ) )  =  ( ( 4  +  1 ) C 2 ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ( 4 C 2 )  +  ( 4 C ( 2  −  1 ) ) )  =  ( ( 4  +  1 ) C 2 ) | 
						
							| 5 |  | 4p1e5 | ⊢ ( 4  +  1 )  =  5 | 
						
							| 6 | 5 | oveq1i | ⊢ ( ( 4  +  1 ) C 2 )  =  ( 5 C 2 ) | 
						
							| 7 | 4 6 | eqtri | ⊢ ( ( 4 C 2 )  +  ( 4 C ( 2  −  1 ) ) )  =  ( 5 C 2 ) | 
						
							| 8 | 7 | eqcomi | ⊢ ( 5 C 2 )  =  ( ( 4 C 2 )  +  ( 4 C ( 2  −  1 ) ) ) | 
						
							| 9 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 10 | 9 | oveq2i | ⊢ ( 4 C ( 2  −  1 ) )  =  ( 4 C 1 ) | 
						
							| 11 | 10 | oveq2i | ⊢ ( ( 4 C 2 )  +  ( 4 C ( 2  −  1 ) ) )  =  ( ( 4 C 2 )  +  ( 4 C 1 ) ) | 
						
							| 12 |  | 4bc2eq6 | ⊢ ( 4 C 2 )  =  6 | 
						
							| 13 |  | bcn1 | ⊢ ( 4  ∈  ℕ0  →  ( 4 C 1 )  =  4 ) | 
						
							| 14 | 1 13 | ax-mp | ⊢ ( 4 C 1 )  =  4 | 
						
							| 15 | 12 14 | oveq12i | ⊢ ( ( 4 C 2 )  +  ( 4 C 1 ) )  =  ( 6  +  4 ) | 
						
							| 16 | 11 15 | eqtri | ⊢ ( ( 4 C 2 )  +  ( 4 C ( 2  −  1 ) ) )  =  ( 6  +  4 ) | 
						
							| 17 |  | 6p4e10 | ⊢ ( 6  +  4 )  =  ; 1 0 | 
						
							| 18 | 8 16 17 | 3eqtri | ⊢ ( 5 C 2 )  =  ; 1 0 |