| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 2 |
|
2z |
⊢ 2 ∈ ℤ |
| 3 |
|
bcpasc |
⊢ ( ( 4 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 + 1 ) C 2 ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 + 1 ) C 2 ) |
| 5 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
| 6 |
5
|
oveq1i |
⊢ ( ( 4 + 1 ) C 2 ) = ( 5 C 2 ) |
| 7 |
4 6
|
eqtri |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( 5 C 2 ) |
| 8 |
7
|
eqcomi |
⊢ ( 5 C 2 ) = ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) |
| 9 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 10 |
9
|
oveq2i |
⊢ ( 4 C ( 2 − 1 ) ) = ( 4 C 1 ) |
| 11 |
10
|
oveq2i |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 C 2 ) + ( 4 C 1 ) ) |
| 12 |
|
4bc2eq6 |
⊢ ( 4 C 2 ) = 6 |
| 13 |
|
bcn1 |
⊢ ( 4 ∈ ℕ0 → ( 4 C 1 ) = 4 ) |
| 14 |
1 13
|
ax-mp |
⊢ ( 4 C 1 ) = 4 |
| 15 |
12 14
|
oveq12i |
⊢ ( ( 4 C 2 ) + ( 4 C 1 ) ) = ( 6 + 4 ) |
| 16 |
11 15
|
eqtri |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( 6 + 4 ) |
| 17 |
|
6p4e10 |
⊢ ( 6 + 4 ) = ; 1 0 |
| 18 |
8 16 17
|
3eqtri |
⊢ ( 5 C 2 ) = ; 1 0 |