Metamath Proof Explorer


Theorem 5bc2eq10

Description: The value of 5 choose 2. (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Assertion 5bc2eq10 ( 5 C 2 ) = 1 0

Proof

Step Hyp Ref Expression
1 4nn0 4 ∈ ℕ0
2 2z 2 ∈ ℤ
3 bcpasc ( ( 4 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 + 1 ) C 2 ) )
4 1 2 3 mp2an ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 + 1 ) C 2 )
5 4p1e5 ( 4 + 1 ) = 5
6 5 oveq1i ( ( 4 + 1 ) C 2 ) = ( 5 C 2 )
7 4 6 eqtri ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( 5 C 2 )
8 7 eqcomi ( 5 C 2 ) = ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) )
9 2m1e1 ( 2 − 1 ) = 1
10 9 oveq2i ( 4 C ( 2 − 1 ) ) = ( 4 C 1 )
11 10 oveq2i ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 C 2 ) + ( 4 C 1 ) )
12 4bc2eq6 ( 4 C 2 ) = 6
13 bcn1 ( 4 ∈ ℕ0 → ( 4 C 1 ) = 4 )
14 1 13 ax-mp ( 4 C 1 ) = 4
15 12 14 oveq12i ( ( 4 C 2 ) + ( 4 C 1 ) ) = ( 6 + 4 )
16 11 15 eqtri ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( 6 + 4 )
17 6p4e10 ( 6 + 4 ) = 1 0
18 8 16 17 3eqtri ( 5 C 2 ) = 1 0