Step |
Hyp |
Ref |
Expression |
1 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
2 |
|
2z |
⊢ 2 ∈ ℤ |
3 |
|
bcpasc |
⊢ ( ( 4 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 + 1 ) C 2 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 + 1 ) C 2 ) |
5 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
6 |
5
|
oveq1i |
⊢ ( ( 4 + 1 ) C 2 ) = ( 5 C 2 ) |
7 |
4 6
|
eqtri |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( 5 C 2 ) |
8 |
7
|
eqcomi |
⊢ ( 5 C 2 ) = ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) |
9 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
10 |
9
|
oveq2i |
⊢ ( 4 C ( 2 − 1 ) ) = ( 4 C 1 ) |
11 |
10
|
oveq2i |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( ( 4 C 2 ) + ( 4 C 1 ) ) |
12 |
|
4bc2eq6 |
⊢ ( 4 C 2 ) = 6 |
13 |
|
bcn1 |
⊢ ( 4 ∈ ℕ0 → ( 4 C 1 ) = 4 ) |
14 |
1 13
|
ax-mp |
⊢ ( 4 C 1 ) = 4 |
15 |
12 14
|
oveq12i |
⊢ ( ( 4 C 2 ) + ( 4 C 1 ) ) = ( 6 + 4 ) |
16 |
11 15
|
eqtri |
⊢ ( ( 4 C 2 ) + ( 4 C ( 2 − 1 ) ) ) = ( 6 + 4 ) |
17 |
|
6p4e10 |
⊢ ( 6 + 4 ) = ; 1 0 |
18 |
8 16 17
|
3eqtri |
⊢ ( 5 C 2 ) = ; 1 0 |