Metamath Proof Explorer


Theorem 5bc2eq10

Description: The value of 5 choose 2. (Contributed by metakunt, 8-Jun-2024)

Ref Expression
Assertion 5bc2eq10 (52)=10

Proof

Step Hyp Ref Expression
1 4nn0 40
2 2z 2
3 bcpasc 402(42)+(421)=(4+12)
4 1 2 3 mp2an (42)+(421)=(4+12)
5 4p1e5 4+1=5
6 5 oveq1i (4+12)=(52)
7 4 6 eqtri (42)+(421)=(52)
8 7 eqcomi (52)=(42)+(421)
9 2m1e1 21=1
10 9 oveq2i (421)=(41)
11 10 oveq2i (42)+(421)=(42)+(41)
12 4bc2eq6 (42)=6
13 bcn1 40(41)=4
14 1 13 ax-mp (41)=4
15 12 14 oveq12i (42)+(41)=6+4
16 11 15 eqtri (42)+(421)=6+4
17 6p4e10 6+4=10
18 8 16 17 3eqtri (52)=10