Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
2 |
|
ax-1cn |
|- 1 e. CC |
3 |
|
addass |
|- ( ( N e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
4 |
2 2 3
|
mp3an23 |
|- ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
5 |
1 4
|
syl |
|- ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
6 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
7 |
6
|
oveq2i |
|- ( N + 2 ) = ( N + ( 1 + 1 ) ) |
8 |
7
|
eqcomi |
|- ( N + ( 1 + 1 ) ) = ( N + 2 ) |
9 |
8
|
a1i |
|- ( N e. NN0 -> ( N + ( 1 + 1 ) ) = ( N + 2 ) ) |
10 |
5 9
|
eqtrd |
|- ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) |
11 |
10
|
fveq2d |
|- ( N e. NN0 -> ( ! ` ( ( N + 1 ) + 1 ) ) = ( ! ` ( N + 2 ) ) ) |
12 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
13 |
|
facp1 |
|- ( ( N + 1 ) e. NN0 -> ( ! ` ( ( N + 1 ) + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) ) |
14 |
12 13
|
syl |
|- ( N e. NN0 -> ( ! ` ( ( N + 1 ) + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) ) |
15 |
11 14
|
eqtr3d |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) ) |
16 |
10
|
oveq2d |
|- ( N e. NN0 -> ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. ( N + 2 ) ) ) |
17 |
15 16
|
eqtrd |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ! ` ( N + 1 ) ) x. ( N + 2 ) ) ) |
18 |
|
facp1 |
|- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
19 |
18
|
oveq1d |
|- ( N e. NN0 -> ( ( ! ` ( N + 1 ) ) x. ( N + 2 ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) ) |
20 |
17 19
|
eqtrd |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) ) |
21 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
22 |
|
nncn |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. CC ) |
23 |
21 22
|
syl |
|- ( N e. NN0 -> ( ! ` N ) e. CC ) |
24 |
|
nn0cn |
|- ( ( N + 1 ) e. NN0 -> ( N + 1 ) e. CC ) |
25 |
12 24
|
syl |
|- ( N e. NN0 -> ( N + 1 ) e. CC ) |
26 |
|
2cn |
|- 2 e. CC |
27 |
|
addcl |
|- ( ( N e. CC /\ 2 e. CC ) -> ( N + 2 ) e. CC ) |
28 |
26 27
|
mpan2 |
|- ( N e. CC -> ( N + 2 ) e. CC ) |
29 |
1 28
|
syl |
|- ( N e. NN0 -> ( N + 2 ) e. CC ) |
30 |
|
mulass |
|- ( ( ( ! ` N ) e. CC /\ ( N + 1 ) e. CC /\ ( N + 2 ) e. CC ) -> ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 2 ) ) ) ) |
31 |
23 25 29 30
|
syl3anc |
|- ( N e. NN0 -> ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 2 ) ) ) ) |
32 |
20 31
|
eqtrd |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 2 ) ) ) ) |