| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
addass |
|- ( ( N e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
| 4 |
2 2 3
|
mp3an23 |
|- ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
| 5 |
1 4
|
syl |
|- ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
| 6 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 7 |
6
|
oveq2i |
|- ( N + 2 ) = ( N + ( 1 + 1 ) ) |
| 8 |
7
|
eqcomi |
|- ( N + ( 1 + 1 ) ) = ( N + 2 ) |
| 9 |
8
|
a1i |
|- ( N e. NN0 -> ( N + ( 1 + 1 ) ) = ( N + 2 ) ) |
| 10 |
5 9
|
eqtrd |
|- ( N e. NN0 -> ( ( N + 1 ) + 1 ) = ( N + 2 ) ) |
| 11 |
10
|
fveq2d |
|- ( N e. NN0 -> ( ! ` ( ( N + 1 ) + 1 ) ) = ( ! ` ( N + 2 ) ) ) |
| 12 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 13 |
|
facp1 |
|- ( ( N + 1 ) e. NN0 -> ( ! ` ( ( N + 1 ) + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) ) |
| 14 |
12 13
|
syl |
|- ( N e. NN0 -> ( ! ` ( ( N + 1 ) + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) ) |
| 15 |
11 14
|
eqtr3d |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) ) |
| 16 |
10
|
oveq2d |
|- ( N e. NN0 -> ( ( ! ` ( N + 1 ) ) x. ( ( N + 1 ) + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. ( N + 2 ) ) ) |
| 17 |
15 16
|
eqtrd |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ! ` ( N + 1 ) ) x. ( N + 2 ) ) ) |
| 18 |
|
facp1 |
|- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 19 |
18
|
oveq1d |
|- ( N e. NN0 -> ( ( ! ` ( N + 1 ) ) x. ( N + 2 ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) ) |
| 20 |
17 19
|
eqtrd |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) ) |
| 21 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
| 22 |
|
nncn |
|- ( ( ! ` N ) e. NN -> ( ! ` N ) e. CC ) |
| 23 |
21 22
|
syl |
|- ( N e. NN0 -> ( ! ` N ) e. CC ) |
| 24 |
|
nn0cn |
|- ( ( N + 1 ) e. NN0 -> ( N + 1 ) e. CC ) |
| 25 |
12 24
|
syl |
|- ( N e. NN0 -> ( N + 1 ) e. CC ) |
| 26 |
|
2cn |
|- 2 e. CC |
| 27 |
|
addcl |
|- ( ( N e. CC /\ 2 e. CC ) -> ( N + 2 ) e. CC ) |
| 28 |
26 27
|
mpan2 |
|- ( N e. CC -> ( N + 2 ) e. CC ) |
| 29 |
1 28
|
syl |
|- ( N e. NN0 -> ( N + 2 ) e. CC ) |
| 30 |
|
mulass |
|- ( ( ( ! ` N ) e. CC /\ ( N + 1 ) e. CC /\ ( N + 2 ) e. CC ) -> ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 2 ) ) ) ) |
| 31 |
23 25 29 30
|
syl3anc |
|- ( N e. NN0 -> ( ( ( ! ` N ) x. ( N + 1 ) ) x. ( N + 2 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 2 ) ) ) ) |
| 32 |
20 31
|
eqtrd |
|- ( N e. NN0 -> ( ! ` ( N + 2 ) ) = ( ( ! ` N ) x. ( ( N + 1 ) x. ( N + 2 ) ) ) ) |