| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aks6d1c2p1.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | aks6d1c2p1.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | aks6d1c2p1.3 |  |-  ( ph -> P || N ) | 
						
							| 4 |  | aks6d1c2p1.4 |  |-  E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 5 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> P e. NN ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> a e. ( NN0 X. NN0 ) ) | 
						
							| 9 |  | xp1st |  |-  ( a e. ( NN0 X. NN0 ) -> ( 1st ` a ) e. NN0 ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( 1st ` a ) e. NN0 ) | 
						
							| 11 | 7 10 | nnexpcld |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` a ) ) e. NN ) | 
						
							| 12 | 1 6 | jca |  |-  ( ph -> ( N e. NN /\ P e. NN ) ) | 
						
							| 13 |  | nndivdvds |  |-  ( ( N e. NN /\ P e. NN ) -> ( P || N <-> ( N / P ) e. NN ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( P || N <-> ( N / P ) e. NN ) ) | 
						
							| 15 | 3 14 | mpbid |  |-  ( ph -> ( N / P ) e. NN ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( N / P ) e. NN ) | 
						
							| 17 |  | xp2nd |  |-  ( a e. ( NN0 X. NN0 ) -> ( 2nd ` a ) e. NN0 ) | 
						
							| 18 | 8 17 | syl |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( 2nd ` a ) e. NN0 ) | 
						
							| 19 | 16 18 | nnexpcld |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` a ) ) e. NN ) | 
						
							| 20 | 11 19 | nnmulcld |  |-  ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) e. NN ) | 
						
							| 21 |  | vex |  |-  k e. _V | 
						
							| 22 |  | vex |  |-  l e. _V | 
						
							| 23 | 21 22 | op1std |  |-  ( a = <. k , l >. -> ( 1st ` a ) = k ) | 
						
							| 24 | 23 | oveq2d |  |-  ( a = <. k , l >. -> ( P ^ ( 1st ` a ) ) = ( P ^ k ) ) | 
						
							| 25 | 21 22 | op2ndd |  |-  ( a = <. k , l >. -> ( 2nd ` a ) = l ) | 
						
							| 26 | 25 | oveq2d |  |-  ( a = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` a ) ) = ( ( N / P ) ^ l ) ) | 
						
							| 27 | 24 26 | oveq12d |  |-  ( a = <. k , l >. -> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 28 | 27 | mpompt |  |-  ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) | 
						
							| 29 | 28 | eqcomi |  |-  ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) | 
						
							| 30 | 4 29 | eqtri |  |-  E = ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) | 
						
							| 31 | 20 30 | fmptd |  |-  ( ph -> E : ( NN0 X. NN0 ) --> NN ) |