Step |
Hyp |
Ref |
Expression |
1 |
|
aks6d1c2p1.1 |
|- ( ph -> N e. NN ) |
2 |
|
aks6d1c2p1.2 |
|- ( ph -> P e. Prime ) |
3 |
|
aks6d1c2p1.3 |
|- ( ph -> P || N ) |
4 |
|
aks6d1c2p1.4 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
5 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
6 |
2 5
|
syl |
|- ( ph -> P e. NN ) |
7 |
6
|
adantr |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> P e. NN ) |
8 |
|
simpr |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> a e. ( NN0 X. NN0 ) ) |
9 |
|
xp1st |
|- ( a e. ( NN0 X. NN0 ) -> ( 1st ` a ) e. NN0 ) |
10 |
8 9
|
syl |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( 1st ` a ) e. NN0 ) |
11 |
7 10
|
nnexpcld |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` a ) ) e. NN ) |
12 |
1 6
|
jca |
|- ( ph -> ( N e. NN /\ P e. NN ) ) |
13 |
|
nndivdvds |
|- ( ( N e. NN /\ P e. NN ) -> ( P || N <-> ( N / P ) e. NN ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( P || N <-> ( N / P ) e. NN ) ) |
15 |
3 14
|
mpbid |
|- ( ph -> ( N / P ) e. NN ) |
16 |
15
|
adantr |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( N / P ) e. NN ) |
17 |
|
xp2nd |
|- ( a e. ( NN0 X. NN0 ) -> ( 2nd ` a ) e. NN0 ) |
18 |
8 17
|
syl |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( 2nd ` a ) e. NN0 ) |
19 |
16 18
|
nnexpcld |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` a ) ) e. NN ) |
20 |
11 19
|
nnmulcld |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) e. NN ) |
21 |
|
vex |
|- k e. _V |
22 |
|
vex |
|- l e. _V |
23 |
21 22
|
op1std |
|- ( a = <. k , l >. -> ( 1st ` a ) = k ) |
24 |
23
|
oveq2d |
|- ( a = <. k , l >. -> ( P ^ ( 1st ` a ) ) = ( P ^ k ) ) |
25 |
21 22
|
op2ndd |
|- ( a = <. k , l >. -> ( 2nd ` a ) = l ) |
26 |
25
|
oveq2d |
|- ( a = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` a ) ) = ( ( N / P ) ^ l ) ) |
27 |
24 26
|
oveq12d |
|- ( a = <. k , l >. -> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
28 |
27
|
mpompt |
|- ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
29 |
28
|
eqcomi |
|- ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) |
30 |
4 29
|
eqtri |
|- E = ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) |
31 |
20 30
|
fmptd |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |