| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c2p1.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
aks6d1c2p1.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
aks6d1c2p1.3 |
|- ( ph -> P || N ) |
| 4 |
|
aks6d1c2p1.4 |
|- E = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 5 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 6 |
2 5
|
syl |
|- ( ph -> P e. NN ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> P e. NN ) |
| 8 |
|
simpr |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> a e. ( NN0 X. NN0 ) ) |
| 9 |
|
xp1st |
|- ( a e. ( NN0 X. NN0 ) -> ( 1st ` a ) e. NN0 ) |
| 10 |
8 9
|
syl |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( 1st ` a ) e. NN0 ) |
| 11 |
7 10
|
nnexpcld |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( P ^ ( 1st ` a ) ) e. NN ) |
| 12 |
1 6
|
jca |
|- ( ph -> ( N e. NN /\ P e. NN ) ) |
| 13 |
|
nndivdvds |
|- ( ( N e. NN /\ P e. NN ) -> ( P || N <-> ( N / P ) e. NN ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( P || N <-> ( N / P ) e. NN ) ) |
| 15 |
3 14
|
mpbid |
|- ( ph -> ( N / P ) e. NN ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( N / P ) e. NN ) |
| 17 |
|
xp2nd |
|- ( a e. ( NN0 X. NN0 ) -> ( 2nd ` a ) e. NN0 ) |
| 18 |
8 17
|
syl |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( 2nd ` a ) e. NN0 ) |
| 19 |
16 18
|
nnexpcld |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( ( N / P ) ^ ( 2nd ` a ) ) e. NN ) |
| 20 |
11 19
|
nnmulcld |
|- ( ( ph /\ a e. ( NN0 X. NN0 ) ) -> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) e. NN ) |
| 21 |
|
vex |
|- k e. _V |
| 22 |
|
vex |
|- l e. _V |
| 23 |
21 22
|
op1std |
|- ( a = <. k , l >. -> ( 1st ` a ) = k ) |
| 24 |
23
|
oveq2d |
|- ( a = <. k , l >. -> ( P ^ ( 1st ` a ) ) = ( P ^ k ) ) |
| 25 |
21 22
|
op2ndd |
|- ( a = <. k , l >. -> ( 2nd ` a ) = l ) |
| 26 |
25
|
oveq2d |
|- ( a = <. k , l >. -> ( ( N / P ) ^ ( 2nd ` a ) ) = ( ( N / P ) ^ l ) ) |
| 27 |
24 26
|
oveq12d |
|- ( a = <. k , l >. -> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) = ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 28 |
27
|
mpompt |
|- ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) = ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) |
| 29 |
28
|
eqcomi |
|- ( k e. NN0 , l e. NN0 |-> ( ( P ^ k ) x. ( ( N / P ) ^ l ) ) ) = ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) |
| 30 |
4 29
|
eqtri |
|- E = ( a e. ( NN0 X. NN0 ) |-> ( ( P ^ ( 1st ` a ) ) x. ( ( N / P ) ^ ( 2nd ` a ) ) ) ) |
| 31 |
20 30
|
fmptd |
|- ( ph -> E : ( NN0 X. NN0 ) --> NN ) |