Description: Double deduction from Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reximddv2.1 | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch ) |
|
| reximddv2.2 | |- ( ph -> E. x e. A E. y e. B ps ) |
||
| Assertion | reximddv2 | |- ( ph -> E. x e. A E. y e. B ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddv2.1 | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch ) |
|
| 2 | reximddv2.2 | |- ( ph -> E. x e. A E. y e. B ps ) |
|
| 3 | 1 | ex | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps -> ch ) ) |
| 4 | 3 | reximdva | |- ( ( ph /\ x e. A ) -> ( E. y e. B ps -> E. y e. B ch ) ) |
| 5 | 4 | impr | |- ( ( ph /\ ( x e. A /\ E. y e. B ps ) ) -> E. y e. B ch ) |
| 6 | 5 2 | reximddv | |- ( ph -> E. x e. A E. y e. B ch ) |