Metamath Proof Explorer


Theorem aks6d1c2

Description: Claim 2 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 2-May-2025)

Ref Expression
Hypotheses aks6d1c2a.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
aks6d1c2a.2 P = chr K
aks6d1c2a.3 φ K Field
aks6d1c2a.4 φ P
aks6d1c2a.5 φ R
aks6d1c2a.6 φ N
aks6d1c2a.7 φ P N
aks6d1c2a.8 φ N gcd R = 1
aks6d1c2a.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
aks6d1c2a.11 φ A 0
aks6d1c2a.12 E = k 0 , l 0 P k N P l
aks6d1c2a.13 L = ℤRHom /R
aks6d1c2a.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
aks6d1c2a.15 φ x Base K P mulGrp K x K RingIso K
aks6d1c2a.16 φ M mulGrp K PrimRoots R
aks6d1c2a.17 H = h 0 0 A eval 1 K G h M
aks6d1c2a.18 B = L E 0 × 0
aks6d1c2a.19 C = E 0 B × 0 B
aks6d1c2a.20 φ Q Q N P Q
Assertion aks6d1c2 φ H 0 0 A N B

Proof

Step Hyp Ref Expression
1 aks6d1c2a.1 ˙ = e f | e f Base Poly 1 K y mulGrp K PrimRoots R e mulGrp K eval 1 K f y = eval 1 K f e mulGrp K y
2 aks6d1c2a.2 P = chr K
3 aks6d1c2a.3 φ K Field
4 aks6d1c2a.4 φ P
5 aks6d1c2a.5 φ R
6 aks6d1c2a.6 φ N
7 aks6d1c2a.7 φ P N
8 aks6d1c2a.8 φ N gcd R = 1
9 aks6d1c2a.10 G = g 0 0 A mulGrp Poly 1 K i = 0 A g i mulGrp Poly 1 K var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K i
10 aks6d1c2a.11 φ A 0
11 aks6d1c2a.12 E = k 0 , l 0 P k N P l
12 aks6d1c2a.13 L = ℤRHom /R
13 aks6d1c2a.14 φ a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
14 aks6d1c2a.15 φ x Base K P mulGrp K x K RingIso K
15 aks6d1c2a.16 φ M mulGrp K PrimRoots R
16 aks6d1c2a.17 H = h 0 0 A eval 1 K G h M
17 aks6d1c2a.18 B = L E 0 × 0
18 aks6d1c2a.19 C = E 0 B × 0 B
19 aks6d1c2a.20 φ Q Q N P Q
20 simpl φ b C c C b < c d c = b + d R φ b C c C
21 simprl φ b C c C b < c d c = b + d R b < c
22 20 21 jca φ b C c C b < c d c = b + d R φ b C c C b < c
23 simprr φ b C c C b < c d c = b + d R d c = b + d R
24 22 23 jca φ b C c C b < c d c = b + d R φ b C c C b < c d c = b + d R
25 3 ad5antr φ b C c C b < c d c = b + d R K Field
26 4 ad5antr φ b C c C b < c d c = b + d R P
27 5 ad5antr φ b C c C b < c d c = b + d R R
28 6 ad5antr φ b C c C b < c d c = b + d R N
29 7 ad5antr φ b C c C b < c d c = b + d R P N
30 8 ad5antr φ b C c C b < c d c = b + d R N gcd R = 1
31 0nn0 0 0
32 31 a1i φ b C c C b < c d c = b + d R j 0 A 0 0
33 eqid j 0 A 0 = j 0 A 0
34 32 33 fmptd φ b C c C b < c d c = b + d R j 0 A 0 : 0 A 0
35 10 ad5antr φ b C c C b < c d c = b + d R A 0
36 13 ad5antr φ b C c C b < c d c = b + d R a 1 A N ˙ var 1 K + Poly 1 K algSc Poly 1 K ℤRHom K a
37 14 ad5antr φ b C c C b < c d c = b + d R x Base K P mulGrp K x K RingIso K
38 15 ad5antr φ b C c C b < c d c = b + d R M mulGrp K PrimRoots R
39 simp-5r φ b C c C b < c d c = b + d R b C
40 simp-4r φ b C c C b < c d c = b + d R c C
41 simpllr φ b C c C b < c d c = b + d R b < c
42 eqid mulGrp Poly 1 K = mulGrp Poly 1 K
43 eqid var 1 K = var 1 K
44 eqid c mulGrp Poly 1 K var 1 K - Poly 1 K b mulGrp Poly 1 K var 1 K = c mulGrp Poly 1 K var 1 K - Poly 1 K b mulGrp Poly 1 K var 1 K
45 simplr φ b C c C b < c d c = b + d R d
46 simpr φ b C c C b < c d c = b + d R c = b + d R
47 1 2 25 26 27 28 29 30 34 9 35 11 12 36 37 38 16 17 18 39 40 41 42 43 44 45 46 aks6d1c2lem4 φ b C c C b < c d c = b + d R H 0 0 A N B
48 47 ex φ b C c C b < c d c = b + d R H 0 0 A N B
49 48 rexlimdva φ b C c C b < c d c = b + d R H 0 0 A N B
50 49 imp φ b C c C b < c d c = b + d R H 0 0 A N B
51 24 50 syl φ b C c C b < c d c = b + d R H 0 0 A N B
52 simprr φ b C c C t C L t b = t C L t c b < c b < c
53 nfcv _ s L t
54 nfcv _ t L s
55 fveq2 t = s L t = L s
56 53 54 55 cbvmpt t C L t = s C L s
57 56 a1i φ b C c C t C L t b = t C L t c b < c t C L t = s C L s
58 simpr φ b C c C t C L t b = t C L t c b < c s = b s = b
59 58 fveq2d φ b C c C t C L t b = t C L t c b < c s = b L s = L b
60 simpllr φ b C c C t C L t b = t C L t c b < c b C
61 fvexd φ b C c C t C L t b = t C L t c b < c L b V
62 57 59 60 61 fvmptd φ b C c C t C L t b = t C L t c b < c t C L t b = L b
63 62 eqcomd φ b C c C t C L t b = t C L t c b < c L b = t C L t b
64 simprl φ b C c C t C L t b = t C L t c b < c t C L t b = t C L t c
65 simpr φ b C c C t C L t b = t C L t c b < c s = c s = c
66 65 fveq2d φ b C c C t C L t b = t C L t c b < c s = c L s = L c
67 simplr φ b C c C t C L t b = t C L t c b < c c C
68 fvexd φ b C c C t C L t b = t C L t c b < c L c V
69 57 66 67 68 fvmptd φ b C c C t C L t b = t C L t c b < c t C L t c = L c
70 64 69 eqtrd φ b C c C t C L t b = t C L t c b < c t C L t b = L c
71 63 70 eqtrd φ b C c C t C L t b = t C L t c b < c L b = L c
72 71 eqcomd φ b C c C t C L t b = t C L t c b < c L c = L b
73 5 nnnn0d φ R 0
74 73 adantr φ b C R 0
75 74 adantr φ b C c C R 0
76 75 adantr φ b C c C t C L t b = t C L t c b < c R 0
77 fz0ssnn0 0 B 0
78 77 a1i φ 0 B 0
79 78 78 jca φ 0 B 0 0 B 0
80 eqid /R = /R
81 6 4 7 5 8 11 12 80 hashscontpowcl φ L E 0 × 0 0
82 81 nn0red φ L E 0 × 0
83 81 nn0ge0d φ 0 L E 0 × 0
84 82 83 resqrtcld φ L E 0 × 0
85 84 flcld φ L E 0 × 0
86 82 83 sqrtge0d φ 0 L E 0 × 0
87 0zd φ 0
88 flge L E 0 × 0 0 0 L E 0 × 0 0 L E 0 × 0
89 84 87 88 syl2anc φ 0 L E 0 × 0 0 L E 0 × 0
90 86 89 mpbid φ 0 L E 0 × 0
91 85 90 jca φ L E 0 × 0 0 L E 0 × 0
92 elnn0z L E 0 × 0 0 L E 0 × 0 0 L E 0 × 0
93 91 92 sylibr φ L E 0 × 0 0
94 17 a1i φ B = L E 0 × 0
95 94 eleq1d φ B 0 L E 0 × 0 0
96 93 95 mpbird φ B 0
97 96 nn0ge0d φ 0 B
98 96 nn0zd φ B
99 eluz 0 B B 0 0 B
100 87 98 99 syl2anc φ B 0 0 B
101 97 100 mpbird φ B 0
102 fzn0 0 B B 0
103 101 102 sylibr φ 0 B
104 103 103 jca φ 0 B 0 B
105 xpnz 0 B 0 B 0 B × 0 B
106 105 biimpi 0 B 0 B 0 B × 0 B
107 104 106 syl φ 0 B × 0 B
108 ssxpb 0 B × 0 B 0 B × 0 B 0 × 0 0 B 0 0 B 0
109 107 108 syl φ 0 B × 0 B 0 × 0 0 B 0 0 B 0
110 79 109 mpbird φ 0 B × 0 B 0 × 0
111 imass2 0 B × 0 B 0 × 0 E 0 B × 0 B E 0 × 0
112 110 111 syl φ E 0 B × 0 B E 0 × 0
113 nfv o φ
114 19 simp1d φ Q
115 19 simp2d φ Q N
116 19 simp3d φ P Q
117 6 4 7 11 114 115 116 aks6d1c2p2 φ E : 0 × 0 1-1
118 f1f E : 0 × 0 1-1 E : 0 × 0
119 117 118 syl φ E : 0 × 0
120 119 ffnd φ E Fn 0 × 0
121 120 fnfund φ Fun E
122 119 ffvelcdmda φ o 0 × 0 E o
123 113 121 122 funimassd φ E 0 × 0
124 112 123 sstrd φ E 0 B × 0 B
125 18 a1i φ C = E 0 B × 0 B
126 125 sseq1d φ C E 0 B × 0 B
127 124 126 mpbird φ C
128 127 ad2antrr φ b C c C C
129 simpr φ b C c C c C
130 128 129 sseldd φ b C c C c
131 130 nnzd φ b C c C c
132 131 adantr φ b C c C t C L t b = t C L t c b < c c
133 simplr φ b C c C b C
134 128 133 sseldd φ b C c C b
135 134 nnzd φ b C c C b
136 135 adantr φ b C c C t C L t b = t C L t c b < c b
137 80 12 zndvds R 0 c b L c = L b R c b
138 76 132 136 137 syl3anc φ b C c C t C L t b = t C L t c b < c L c = L b R c b
139 72 138 mpbid φ b C c C t C L t b = t C L t c b < c R c b
140 76 nn0zd φ b C c C t C L t b = t C L t c b < c R
141 132 136 zsubcld φ b C c C t C L t b = t C L t c b < c c b
142 divides R c b R c b d d R = c b
143 140 141 142 syl2anc φ b C c C t C L t b = t C L t c b < c R c b d d R = c b
144 143 biimpd φ b C c C t C L t b = t C L t c b < c R c b d d R = c b
145 139 144 mpd φ b C c C t C L t b = t C L t c b < c d d R = c b
146 simprl φ b C c C t C L t b = t C L t c b < c d d R = c b d
147 130 ad2antrr φ b C c C t C L t b = t C L t c b < c d d R = c b c
148 147 nnred φ b C c C t C L t b = t C L t c b < c d d R = c b c
149 134 ad2antrr φ b C c C t C L t b = t C L t c b < c d d R = c b b
150 149 nnred φ b C c C t C L t b = t C L t c b < c d d R = c b b
151 148 150 resubcld φ b C c C t C L t b = t C L t c b < c d d R = c b c b
152 5 nnrpd φ R +
153 152 adantr φ b C R +
154 153 adantr φ b C c C R +
155 154 adantr φ b C c C t C L t b = t C L t c b < c R +
156 155 adantr φ b C c C t C L t b = t C L t c b < c d d R = c b R +
157 156 rpred φ b C c C t C L t b = t C L t c b < c d d R = c b R
158 52 adantr φ b C c C t C L t b = t C L t c b < c d d R = c b b < c
159 150 148 posdifd φ b C c C t C L t b = t C L t c b < c d d R = c b b < c 0 < c b
160 158 159 mpbid φ b C c C t C L t b = t C L t c b < c d d R = c b 0 < c b
161 156 rpgt0d φ b C c C t C L t b = t C L t c b < c d d R = c b 0 < R
162 151 157 160 161 divgt0d φ b C c C t C L t b = t C L t c b < c d d R = c b 0 < c b R
163 157 recnd φ b C c C t C L t b = t C L t c b < c d d R = c b R
164 146 zred φ b C c C t C L t b = t C L t c b < c d d R = c b d
165 164 recnd φ b C c C t C L t b = t C L t c b < c d d R = c b d
166 163 165 mulcomd φ b C c C t C L t b = t C L t c b < c d d R = c b R d = d R
167 simprr φ b C c C t C L t b = t C L t c b < c d d R = c b d R = c b
168 166 167 eqtrd φ b C c C t C L t b = t C L t c b < c d d R = c b R d = c b
169 151 recnd φ b C c C t C L t b = t C L t c b < c d d R = c b c b
170 161 gt0ne0d φ b C c C t C L t b = t C L t c b < c d d R = c b R 0
171 169 163 165 170 divmuld φ b C c C t C L t b = t C L t c b < c d d R = c b c b R = d R d = c b
172 168 171 mpbird φ b C c C t C L t b = t C L t c b < c d d R = c b c b R = d
173 162 172 breqtrd φ b C c C t C L t b = t C L t c b < c d d R = c b 0 < d
174 146 173 jca φ b C c C t C L t b = t C L t c b < c d d R = c b d 0 < d
175 elnnz d d 0 < d
176 174 175 sylibr φ b C c C t C L t b = t C L t c b < c d d R = c b d
177 167 eqcomd φ b C c C t C L t b = t C L t c b < c d d R = c b c b = d R
178 148 recnd φ b C c C t C L t b = t C L t c b < c d d R = c b c
179 150 recnd φ b C c C t C L t b = t C L t c b < c d d R = c b b
180 167 169 eqeltrd φ b C c C t C L t b = t C L t c b < c d d R = c b d R
181 178 179 180 subaddd φ b C c C t C L t b = t C L t c b < c d d R = c b c b = d R b + d R = c
182 177 181 mpbid φ b C c C t C L t b = t C L t c b < c d d R = c b b + d R = c
183 182 eqcomd φ b C c C t C L t b = t C L t c b < c d d R = c b c = b + d R
184 145 176 183 reximssdv φ b C c C t C L t b = t C L t c b < c d c = b + d R
185 52 184 jca φ b C c C t C L t b = t C L t c b < c b < c d c = b + d R
186 fzfid φ 0 B Fin
187 xpfi 0 B Fin 0 B Fin 0 B × 0 B Fin
188 186 186 187 syl2anc φ 0 B × 0 B Fin
189 imafi Fun E 0 B × 0 B Fin E 0 B × 0 B Fin
190 121 188 189 syl2anc φ E 0 B × 0 B Fin
191 125 eleq1d φ C Fin E 0 B × 0 B Fin
192 190 191 mpbird φ C Fin
193 80 zncrng R 0 /R CRing
194 73 193 syl φ /R CRing
195 crngring /R CRing /R Ring
196 194 195 syl φ /R Ring
197 12 zrhrhm /R Ring L ring RingHom /R
198 196 197 syl φ L ring RingHom /R
199 198 imaexd φ L E 0 × 0 V
200 hashclb L E 0 × 0 V L E 0 × 0 Fin L E 0 × 0 0
201 199 200 syl φ L E 0 × 0 Fin L E 0 × 0 0
202 81 201 mpbird φ L E 0 × 0 Fin
203 hashcl L E 0 × 0 Fin L E 0 × 0 0
204 202 203 syl φ L E 0 × 0 0
205 204 nn0red φ L E 0 × 0
206 204 nn0ge0d φ 0 L E 0 × 0
207 sqrtmsq L E 0 × 0 0 L E 0 × 0 L E 0 × 0 L E 0 × 0 = L E 0 × 0
208 205 206 207 syl2anc φ L E 0 × 0 L E 0 × 0 = L E 0 × 0
209 208 eqcomd φ L E 0 × 0 = L E 0 × 0 L E 0 × 0
210 205 206 jca φ L E 0 × 0 0 L E 0 × 0
211 sqrtmul L E 0 × 0 0 L E 0 × 0 L E 0 × 0 0 L E 0 × 0 L E 0 × 0 L E 0 × 0 = L E 0 × 0 L E 0 × 0
212 210 210 211 syl2anc φ L E 0 × 0 L E 0 × 0 = L E 0 × 0 L E 0 × 0
213 205 206 resqrtcld φ L E 0 × 0
214 213 flcld φ L E 0 × 0
215 205 206 sqrtge0d φ 0 L E 0 × 0
216 213 87 88 syl2anc φ 0 L E 0 × 0 0 L E 0 × 0
217 215 216 mpbid φ 0 L E 0 × 0
218 214 217 jca φ L E 0 × 0 0 L E 0 × 0
219 218 92 sylibr φ L E 0 × 0 0
220 219 95 mpbird φ B 0
221 220 nn0red φ B
222 1red φ 1
223 221 222 readdcld φ B + 1
224 flltp1 L E 0 × 0 L E 0 × 0 < L E 0 × 0 + 1
225 213 224 syl φ L E 0 × 0 < L E 0 × 0 + 1
226 94 oveq1d φ B + 1 = L E 0 × 0 + 1
227 225 226 breqtrrd φ L E 0 × 0 < B + 1
228 213 223 213 223 215 227 215 227 ltmul12ad φ L E 0 × 0 L E 0 × 0 < B + 1 B + 1
229 212 228 eqbrtrd φ L E 0 × 0 L E 0 × 0 < B + 1 B + 1
230 209 229 eqbrtrd φ L E 0 × 0 < B + 1 B + 1
231 hashfz0 B 0 0 B = B + 1
232 220 231 syl φ 0 B = B + 1
233 232 232 oveq12d φ 0 B 0 B = B + 1 B + 1
234 230 233 breqtrrd φ L E 0 × 0 < 0 B 0 B
235 186 186 jca φ 0 B Fin 0 B Fin
236 hashxp 0 B Fin 0 B Fin 0 B × 0 B = 0 B 0 B
237 235 236 syl φ 0 B × 0 B = 0 B 0 B
238 234 237 breqtrrd φ L E 0 × 0 < 0 B × 0 B
239 ovexd φ 0 B V
240 239 239 jca φ 0 B V 0 B V
241 xpexg 0 B V 0 B V 0 B × 0 B V
242 240 241 syl φ 0 B × 0 B V
243 242 mptexd φ w 0 B × 0 B E w V
244 120 adantr φ w 0 B × 0 B E Fn 0 × 0
245 110 sselda φ w 0 B × 0 B w 0 × 0
246 simpr φ w 0 B × 0 B w 0 B × 0 B
247 244 245 246 fnfvimad φ w 0 B × 0 B E w E 0 B × 0 B
248 eqid w 0 B × 0 B E w = w 0 B × 0 B E w
249 247 248 fmptd φ w 0 B × 0 B E w : 0 B × 0 B E 0 B × 0 B
250 119 110 feqresmpt φ E 0 B × 0 B = w 0 B × 0 B E w
251 250 feq1d φ E 0 B × 0 B : 0 B × 0 B E 0 B × 0 B w 0 B × 0 B E w : 0 B × 0 B E 0 B × 0 B
252 249 251 mpbird φ E 0 B × 0 B : 0 B × 0 B E 0 B × 0 B
253 f1resf1 E : 0 × 0 1-1 0 B × 0 B 0 × 0 E 0 B × 0 B : 0 B × 0 B E 0 B × 0 B E 0 B × 0 B : 0 B × 0 B 1-1 E 0 B × 0 B
254 117 110 252 253 syl3anc φ E 0 B × 0 B : 0 B × 0 B 1-1 E 0 B × 0 B
255 eqidd φ 0 B × 0 B = 0 B × 0 B
256 eqidd φ E 0 B × 0 B = E 0 B × 0 B
257 250 255 256 f1eq123d φ E 0 B × 0 B : 0 B × 0 B 1-1 E 0 B × 0 B w 0 B × 0 B E w : 0 B × 0 B 1-1 E 0 B × 0 B
258 254 257 mpbid φ w 0 B × 0 B E w : 0 B × 0 B 1-1 E 0 B × 0 B
259 df-ima E 0 B × 0 B = ran E 0 B × 0 B
260 259 a1i φ E 0 B × 0 B = ran E 0 B × 0 B
261 250 rneqd φ ran E 0 B × 0 B = ran w 0 B × 0 B E w
262 260 261 eqtr2d φ ran w 0 B × 0 B E w = E 0 B × 0 B
263 258 262 jca φ w 0 B × 0 B E w : 0 B × 0 B 1-1 E 0 B × 0 B ran w 0 B × 0 B E w = E 0 B × 0 B
264 dff1o5 w 0 B × 0 B E w : 0 B × 0 B 1-1 onto E 0 B × 0 B w 0 B × 0 B E w : 0 B × 0 B 1-1 E 0 B × 0 B ran w 0 B × 0 B E w = E 0 B × 0 B
265 263 264 sylibr φ w 0 B × 0 B E w : 0 B × 0 B 1-1 onto E 0 B × 0 B
266 f1oeq1 u = w 0 B × 0 B E w u : 0 B × 0 B 1-1 onto E 0 B × 0 B w 0 B × 0 B E w : 0 B × 0 B 1-1 onto E 0 B × 0 B
267 243 265 266 spcedv φ u u : 0 B × 0 B 1-1 onto E 0 B × 0 B
268 hasheqf1oi 0 B × 0 B V u u : 0 B × 0 B 1-1 onto E 0 B × 0 B 0 B × 0 B = E 0 B × 0 B
269 242 268 syl φ u u : 0 B × 0 B 1-1 onto E 0 B × 0 B 0 B × 0 B = E 0 B × 0 B
270 267 269 mpd φ 0 B × 0 B = E 0 B × 0 B
271 238 270 breqtrd φ L E 0 × 0 < E 0 B × 0 B
272 125 fveq2d φ C = E 0 B × 0 B
273 271 272 breqtrrd φ L E 0 × 0 < C
274 zringbas = Base ring
275 eqid Base /R = Base /R
276 274 275 rhmf L ring RingHom /R L : Base /R
277 198 276 syl φ L : Base /R
278 277 ffnd φ L Fn
279 278 adantr φ t C L Fn
280 resss E 0 × 0 E
281 280 a1i φ E 0 × 0 E
282 rnss E 0 × 0 E ran E 0 × 0 ran E
283 281 282 syl φ ran E 0 × 0 ran E
284 df-ima E 0 × 0 = ran E 0 × 0
285 284 a1i φ E 0 × 0 = ran E 0 × 0
286 285 sseq1d φ E 0 × 0 ran E ran E 0 × 0 ran E
287 283 286 mpbird φ E 0 × 0 ran E
288 frn E : 0 × 0 ran E
289 119 288 syl φ ran E
290 287 289 sstrd φ E 0 × 0
291 nnssz
292 291 a1i φ
293 290 292 sstrd φ E 0 × 0
294 293 adantr φ t C E 0 × 0
295 125 sseq1d φ C E 0 × 0 E 0 B × 0 B E 0 × 0
296 112 295 mpbird φ C E 0 × 0
297 296 sseld φ t C t E 0 × 0
298 297 imp φ t C t E 0 × 0
299 fnfvima L Fn E 0 × 0 t E 0 × 0 L t L E 0 × 0
300 279 294 298 299 syl3anc φ t C L t L E 0 × 0
301 eqid t C L t = t C L t
302 300 301 fmptd φ t C L t : C L E 0 × 0
303 nnssre
304 303 a1i φ
305 127 304 sstrd φ C
306 192 202 273 302 305 hashnexinjle φ b C c C t C L t b = t C L t c b < c
307 185 306 reximddv2 φ b C c C b < c d c = b + d R
308 51 307 r19.29vva φ H 0 0 A N B