Step |
Hyp |
Ref |
Expression |
1 |
|
hashnexinjle.1 |
|
2 |
|
hashnexinjle.2 |
|
3 |
|
hashnexinjle.3 |
|
4 |
|
hashnexinjle.4 |
|
5 |
|
hashnexinjle.5 |
|
6 |
|
simpr |
|
7 |
|
fveq2 |
|
8 |
7
|
eqeq2d |
|
9 |
|
breq2 |
|
10 |
8 9
|
anbi12d |
|
11 |
|
fveqeq2 |
|
12 |
|
breq1 |
|
13 |
11 12
|
anbi12d |
|
14 |
10 13
|
cbvrex2vw |
|
15 |
14
|
a1i |
|
16 |
15
|
biimpd |
|
17 |
16
|
imp |
|
18 |
|
fveq2 |
|
19 |
18
|
eqeq2d |
|
20 |
|
breq2 |
|
21 |
19 20
|
anbi12d |
|
22 |
|
fveqeq2 |
|
23 |
|
breq1 |
|
24 |
22 23
|
anbi12d |
|
25 |
21 24
|
cbvrex2vw |
|
26 |
17 25
|
sylib |
|
27 |
|
rexcom |
|
28 |
26 27
|
sylib |
|
29 |
1 2 3 4
|
hashnexinj |
|
30 |
|
simplrl |
|
31 |
|
simpr |
|
32 |
30 31
|
jca |
|
33 |
32
|
orcd |
|
34 |
|
simplrl |
|
35 |
34
|
eqcomd |
|
36 |
|
simpr |
|
37 |
35 36
|
jca |
|
38 |
37
|
olcd |
|
39 |
|
simprr |
|
40 |
|
simpl |
|
41 |
|
simprl |
|
42 |
40 41
|
jca |
|
43 |
5
|
sselda |
|
44 |
42 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
|
simprr |
|
47 |
40 46
|
jca |
|
48 |
5
|
sselda |
|
49 |
47 48
|
syl |
|
50 |
49
|
adantr |
|
51 |
45 50
|
lttri2d |
|
52 |
39 51
|
mpbid |
|
53 |
33 38 52
|
mpjaodan |
|
54 |
53
|
ex |
|
55 |
54
|
reximdvva |
|
56 |
55
|
imp |
|
57 |
|
r19.43 |
|
58 |
57
|
rexbii |
|
59 |
56 58
|
sylib |
|
60 |
|
r19.43 |
|
61 |
59 60
|
sylib |
|
62 |
61
|
ex |
|
63 |
29 62
|
mpd |
|
64 |
6 28 63
|
mpjaodan |
|