Metamath Proof Explorer


Theorem hashnexinjle

Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. Also we introduce a one sided inequality to simplify a duplicateable proof. (Contributed by metakunt, 2-May-2025)

Ref Expression
Hypotheses hashnexinjle.1 ( 𝜑𝐴 ∈ Fin )
hashnexinjle.2 ( 𝜑𝐵 ∈ Fin )
hashnexinjle.3 ( 𝜑 → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) )
hashnexinjle.4 ( 𝜑𝐹 : 𝐴𝐵 )
hashnexinjle.5 ( 𝜑𝐴 ⊆ ℝ )
Assertion hashnexinjle ( 𝜑 → ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )

Proof

Step Hyp Ref Expression
1 hashnexinjle.1 ( 𝜑𝐴 ∈ Fin )
2 hashnexinjle.2 ( 𝜑𝐵 ∈ Fin )
3 hashnexinjle.3 ( 𝜑 → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) )
4 hashnexinjle.4 ( 𝜑𝐹 : 𝐴𝐵 )
5 hashnexinjle.5 ( 𝜑𝐴 ⊆ ℝ )
6 simpr ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )
7 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
8 7 eqeq2d ( 𝑥 = 𝑧 → ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ↔ ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ) )
9 breq2 ( 𝑥 = 𝑧 → ( 𝑦 < 𝑥𝑦 < 𝑧 ) )
10 8 9 anbi12d ( 𝑥 = 𝑧 → ( ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ↔ ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 < 𝑧 ) ) )
11 fveqeq2 ( 𝑦 = 𝑤 → ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ↔ ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ) )
12 breq1 ( 𝑦 = 𝑤 → ( 𝑦 < 𝑧𝑤 < 𝑧 ) )
13 11 12 anbi12d ( 𝑦 = 𝑤 → ( ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ∧ 𝑦 < 𝑧 ) ↔ ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) ) )
14 10 13 cbvrex2vw ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ↔ ∃ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) )
15 14 a1i ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ↔ ∃ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) ) )
16 15 biimpd ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) → ∃ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) ) )
17 16 imp ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) → ∃ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) )
18 fveq2 ( 𝑧 = 𝑦 → ( 𝐹𝑧 ) = ( 𝐹𝑦 ) )
19 18 eqeq2d ( 𝑧 = 𝑦 → ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ↔ ( 𝐹𝑤 ) = ( 𝐹𝑦 ) ) )
20 breq2 ( 𝑧 = 𝑦 → ( 𝑤 < 𝑧𝑤 < 𝑦 ) )
21 19 20 anbi12d ( 𝑧 = 𝑦 → ( ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) ↔ ( ( 𝐹𝑤 ) = ( 𝐹𝑦 ) ∧ 𝑤 < 𝑦 ) ) )
22 fveqeq2 ( 𝑤 = 𝑥 → ( ( 𝐹𝑤 ) = ( 𝐹𝑦 ) ↔ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
23 breq1 ( 𝑤 = 𝑥 → ( 𝑤 < 𝑦𝑥 < 𝑦 ) )
24 22 23 anbi12d ( 𝑤 = 𝑥 → ( ( ( 𝐹𝑤 ) = ( 𝐹𝑦 ) ∧ 𝑤 < 𝑦 ) ↔ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) )
25 21 24 cbvrex2vw ( ∃ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑤 ) = ( 𝐹𝑧 ) ∧ 𝑤 < 𝑧 ) ↔ ∃ 𝑦𝐴𝑥𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )
26 17 25 sylib ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) → ∃ 𝑦𝐴𝑥𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )
27 rexcom ( ∃ 𝑦𝐴𝑥𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ↔ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )
28 26 27 sylib ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) → ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )
29 1 2 3 4 hashnexinj ( 𝜑 → ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) )
30 simplrl ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
31 simpr ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 )
32 30 31 jca ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )
33 32 orcd ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
34 simplrl ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
35 34 eqcomd ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( 𝐹𝑦 ) = ( 𝐹𝑥 ) )
36 simpr ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑦 < 𝑥 ) → 𝑦 < 𝑥 )
37 35 36 jca ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) )
38 37 olcd ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
39 simprr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥𝑦 )
40 simpl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝜑 )
41 simprl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝑥𝐴 )
42 40 41 jca ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝜑𝑥𝐴 ) )
43 5 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
44 42 43 syl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝑥 ∈ ℝ )
45 44 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥 ∈ ℝ )
46 simprr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝑦𝐴 )
47 40 46 jca ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝜑𝑦𝐴 ) )
48 5 sselda ( ( 𝜑𝑦𝐴 ) → 𝑦 ∈ ℝ )
49 47 48 syl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → 𝑦 ∈ ℝ )
50 49 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑦 ∈ ℝ )
51 45 50 lttri2d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → ( 𝑥𝑦 ↔ ( 𝑥 < 𝑦𝑦 < 𝑥 ) ) )
52 39 51 mpbid ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → ( 𝑥 < 𝑦𝑦 < 𝑥 ) )
53 33 38 52 mpjaodan ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
54 53 ex ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) )
55 54 reximdvva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) → ∃ 𝑥𝐴𝑦𝐴 ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) )
56 55 imp ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → ∃ 𝑥𝐴𝑦𝐴 ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
57 r19.43 ( ∃ 𝑦𝐴 ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) ↔ ( ∃ 𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
58 57 rexbii ( ∃ 𝑥𝐴𝑦𝐴 ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
59 56 58 sylib ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
60 r19.43 ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) ↔ ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
61 59 60 sylib ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) ) → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
62 61 ex ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥𝑦 ) → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) )
63 29 62 mpd ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ∧ 𝑦 < 𝑥 ) ) )
64 6 28 63 mpjaodan ( 𝜑 → ∃ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) )