| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnexinjle.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
hashnexinjle.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
hashnexinjle.3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ) |
| 4 |
|
hashnexinjle.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
hashnexinjle.5 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 9 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑧 ) ) |
| 10 |
8 9
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 < 𝑧 ) ) ) |
| 11 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 < 𝑧 ↔ 𝑤 < 𝑧 ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑦 < 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ) ) |
| 14 |
10 13
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ) ) |
| 16 |
15
|
biimpd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 < 𝑧 ↔ 𝑤 < 𝑦 ) ) |
| 21 |
19 20
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑤 < 𝑦 ) ) ) |
| 22 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 < 𝑦 ↔ 𝑥 < 𝑦 ) ) |
| 24 |
22 23
|
anbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑤 < 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ) |
| 25 |
21 24
|
cbvrex2vw |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 < 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |
| 26 |
17 25
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |
| 27 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |
| 29 |
1 2 3 4
|
hashnexinj |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 30 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 31 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
| 32 |
30 31
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |
| 33 |
32
|
orcd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 34 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 35 |
34
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑦 < 𝑥 ) → 𝑦 < 𝑥 ) |
| 37 |
35 36
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) |
| 38 |
37
|
olcd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ 𝑦 < 𝑥 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 39 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
| 40 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝜑 ) |
| 41 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 42 |
40 41
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
| 43 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
| 46 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 47 |
40 46
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) |
| 48 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 51 |
45 50
|
lttri2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑥 ≠ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ) ) |
| 52 |
39 51
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ) ) |
| 53 |
33 38 52
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 54 |
53
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) ) |
| 55 |
54
|
reximdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 57 |
|
r19.43 |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ↔ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 58 |
57
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 59 |
56 58
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 60 |
|
r19.43 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 61 |
59 60
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 62 |
61
|
ex |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) ) |
| 63 |
29 62
|
mpd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ∨ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 64 |
6 28 63
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) |