| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashnexinjle.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hashnexinjle.2 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | hashnexinjle.3 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 4 |  | hashnexinjle.4 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 5 |  | hashnexinjle.5 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  <  𝑥  ↔  𝑦  <  𝑧 ) ) | 
						
							| 10 | 8 9 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑦  <  𝑧 ) ) ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  <  𝑧  ↔  𝑤  <  𝑧 ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑦  <  𝑧 )  ↔  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 ) ) ) | 
						
							| 14 | 10 13 | cbvrex2vw | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 ) ) ) | 
						
							| 16 | 15 | biimpd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 )  →  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑤  <  𝑧  ↔  𝑤  <  𝑦 ) ) | 
						
							| 21 | 19 20 | anbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 )  ↔  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑤  <  𝑦 ) ) ) | 
						
							| 22 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  <  𝑦  ↔  𝑥  <  𝑦 ) ) | 
						
							| 24 | 22 23 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑤  <  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) ) | 
						
							| 25 | 21 24 | cbvrex2vw | ⊢ ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑧 )  ∧  𝑤  <  𝑧 )  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) | 
						
							| 26 | 17 25 | sylib | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ∃ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) | 
						
							| 27 |  | rexcom | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) | 
						
							| 28 | 26 27 | sylib | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) | 
						
							| 29 | 1 2 3 4 | hashnexinj | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 30 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑥  <  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑥  <  𝑦 )  →  𝑥  <  𝑦 ) | 
						
							| 32 | 30 31 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑥  <  𝑦 )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) | 
						
							| 33 | 32 | orcd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑥  <  𝑦 )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 34 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑦  <  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑦  <  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑦  <  𝑥 )  →  𝑦  <  𝑥 ) | 
						
							| 37 | 35 36 | jca | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑦  <  𝑥 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) | 
						
							| 38 | 37 | olcd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  ∧  𝑦  <  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 39 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 40 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  𝜑 ) | 
						
							| 41 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 42 | 40 41 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝜑  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 43 | 5 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 46 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 47 | 40 46 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝜑  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 48 | 5 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 51 | 45 50 | lttri2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑥  ≠  𝑦  ↔  ( 𝑥  <  𝑦  ∨  𝑦  <  𝑥 ) ) ) | 
						
							| 52 | 39 51 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑥  <  𝑦  ∨  𝑦  <  𝑥 ) ) | 
						
							| 53 | 33 38 52 | mpjaodan | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) ) | 
						
							| 55 | 54 | reximdvva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 57 |  | r19.43 | ⊢ ( ∃ 𝑦  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) )  ↔  ( ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 58 | 57 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 59 | 56 58 | sylib | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 60 |  | r19.43 | ⊢ ( ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 61 | 59 60 | sylib | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 62 | 61 | ex | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 )  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) ) | 
						
							| 63 | 29 62 | mpd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 )  ∨  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ∧  𝑦  <  𝑥 ) ) ) | 
						
							| 64 | 6 28 63 | mpjaodan | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) ) |