| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnexinj.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
hashnexinj.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
hashnexinj.3 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ) |
| 4 |
|
hashnexinj.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 7 |
6
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 8 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 10 |
9
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
7 10
|
ltnled |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) < ( ♯ ‘ 𝐴 ) ↔ ¬ ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 12 |
3 11
|
mpbid |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 13 |
|
hashdom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
| 14 |
1 2 13
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
| 15 |
14
|
notbid |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ ¬ 𝐴 ≼ 𝐵 ) ) |
| 16 |
15
|
biimpd |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) → ¬ 𝐴 ≼ 𝐵 ) ) |
| 17 |
12 16
|
mpd |
⊢ ( 𝜑 → ¬ 𝐴 ≼ 𝐵 ) |
| 18 |
|
brdomg |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 19 |
18
|
notbid |
⊢ ( 𝐵 ∈ Fin → ( ¬ 𝐴 ≼ 𝐵 ↔ ¬ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 20 |
19
|
biimpd |
⊢ ( 𝐵 ∈ Fin → ( ¬ 𝐴 ≼ 𝐵 → ¬ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → ( ¬ 𝐴 ≼ 𝐵 → ¬ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 22 |
17 21
|
mpd |
⊢ ( 𝜑 → ¬ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 23 |
|
alnex |
⊢ ( ∀ 𝑓 ¬ 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ¬ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 24 |
22 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑓 ¬ 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 25 |
2 1 4
|
elmapdd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 26 |
|
f1eq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 27 |
26
|
notbid |
⊢ ( 𝑓 = 𝐹 → ( ¬ 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ¬ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 28 |
27
|
spcgv |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) → ( ∀ 𝑓 ¬ 𝑓 : 𝐴 –1-1→ 𝐵 → ¬ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 29 |
25 28
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑓 ¬ 𝑓 : 𝐴 –1-1→ 𝐵 → ¬ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 30 |
24 29
|
mpd |
⊢ ( 𝜑 → ¬ 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 31 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 32 |
|
iman |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 33 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
| 34 |
33
|
anbi2i |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 35 |
32 34
|
xchbinxr |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 36 |
35
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 37 |
|
ralnex2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 38 |
36 37
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 39 |
38
|
anbi2i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) |
| 40 |
31 39
|
bitri |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ) |
| 42 |
41
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ¬ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ) |
| 43 |
42
|
biimpd |
⊢ ( 𝜑 → ( ¬ 𝐹 : 𝐴 –1-1→ 𝐵 → ¬ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ) |
| 44 |
30 43
|
mpd |
⊢ ( 𝜑 → ¬ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) |
| 45 |
4 44
|
mpnanrd |
⊢ ( 𝜑 → ¬ ¬ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 46 |
45
|
notnotrd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |