| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashnexinj.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hashnexinj.2 | ⊢ ( 𝜑  →  𝐵  ∈  Fin ) | 
						
							| 3 |  | hashnexinj.3 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 4 |  | hashnexinj.4 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 5 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 8 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 10 | 9 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 11 | 7 10 | ltnled | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐵 )  <  ( ♯ ‘ 𝐴 )  ↔  ¬  ( ♯ ‘ 𝐴 )  ≤  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 12 | 3 11 | mpbid | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝐴 )  ≤  ( ♯ ‘ 𝐵 ) ) | 
						
							| 13 |  | hashdom | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( ♯ ‘ 𝐴 )  ≤  ( ♯ ‘ 𝐵 )  ↔  𝐴  ≼  𝐵 ) ) | 
						
							| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  ≤  ( ♯ ‘ 𝐵 )  ↔  𝐴  ≼  𝐵 ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝐴 )  ≤  ( ♯ ‘ 𝐵 )  ↔  ¬  𝐴  ≼  𝐵 ) ) | 
						
							| 16 | 15 | biimpd | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝐴 )  ≤  ( ♯ ‘ 𝐵 )  →  ¬  𝐴  ≼  𝐵 ) ) | 
						
							| 17 | 12 16 | mpd | ⊢ ( 𝜑  →  ¬  𝐴  ≼  𝐵 ) | 
						
							| 18 |  | brdomg | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 19 | 18 | notbid | ⊢ ( 𝐵  ∈  Fin  →  ( ¬  𝐴  ≼  𝐵  ↔  ¬  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 20 | 19 | biimpd | ⊢ ( 𝐵  ∈  Fin  →  ( ¬  𝐴  ≼  𝐵  →  ¬  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  ( ¬  𝐴  ≼  𝐵  →  ¬  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 22 | 17 21 | mpd | ⊢ ( 𝜑  →  ¬  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 23 |  | alnex | ⊢ ( ∀ 𝑓 ¬  𝑓 : 𝐴 –1-1→ 𝐵  ↔  ¬  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑓 ¬  𝑓 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 25 | 2 1 4 | elmapdd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 26 |  | f1eq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : 𝐴 –1-1→ 𝐵  ↔  𝐹 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 27 | 26 | notbid | ⊢ ( 𝑓  =  𝐹  →  ( ¬  𝑓 : 𝐴 –1-1→ 𝐵  ↔  ¬  𝐹 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 28 | 27 | spcgv | ⊢ ( 𝐹  ∈  ( 𝐵  ↑m  𝐴 )  →  ( ∀ 𝑓 ¬  𝑓 : 𝐴 –1-1→ 𝐵  →  ¬  𝐹 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 29 | 25 28 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑓 ¬  𝑓 : 𝐴 –1-1→ 𝐵  →  ¬  𝐹 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 30 | 24 29 | mpd | ⊢ ( 𝜑  →  ¬  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 31 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 32 |  | iman | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  ¬  𝑥  =  𝑦 ) ) | 
						
							| 33 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 34 | 33 | anbi2i | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  ¬  𝑥  =  𝑦 ) ) | 
						
							| 35 | 32 34 | xchbinxr | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 36 | 35 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 37 |  | ralnex2 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 )  ↔  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 38 | 36 37 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 39 | 38 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) ) | 
						
							| 40 | 31 39 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) ) ) | 
						
							| 42 | 41 | notbid | ⊢ ( 𝜑  →  ( ¬  𝐹 : 𝐴 –1-1→ 𝐵  ↔  ¬  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) ) ) | 
						
							| 43 | 42 | biimpd | ⊢ ( 𝜑  →  ( ¬  𝐹 : 𝐴 –1-1→ 𝐵  →  ¬  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) ) ) | 
						
							| 44 | 30 43 | mpd | ⊢ ( 𝜑  →  ¬  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) ) | 
						
							| 45 | 4 44 | mpnanrd | ⊢ ( 𝜑  →  ¬  ¬  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 46 | 45 | notnotrd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) |