Step |
Hyp |
Ref |
Expression |
1 |
|
f1eq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1→ 𝑦 ↔ 𝑓 : 𝐴 –1-1→ 𝑦 ) ) |
2 |
1
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 ) ) |
3 |
|
f1eq3 |
⊢ ( 𝑦 = 𝐵 → ( 𝑓 : 𝐴 –1-1→ 𝑦 ↔ 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
4 |
3
|
exbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
5 |
|
df-dom |
⊢ ≼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 } |
6 |
2 4 5
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
7 |
6
|
ex |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) |
8 |
|
reldom |
⊢ Rel ≼ |
9 |
8
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
10 |
|
f1f |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
11 |
|
fdm |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → dom 𝑓 = 𝐴 ) |
12 |
|
vex |
⊢ 𝑓 ∈ V |
13 |
12
|
dmex |
⊢ dom 𝑓 ∈ V |
14 |
11 13
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
15 |
10 14
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
16 |
15
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
17 |
9 16
|
pm5.21ni |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
18 |
17
|
a1d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) |
19 |
7 18
|
pm2.61i |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |