Metamath Proof Explorer


Theorem brdomg

Description: Dominance relation. (Contributed by NM, 15-Jun-1998) (Proof shortened by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion brdomg ( 𝐵𝐶 → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )

Proof

Step Hyp Ref Expression
1 brdom2g ( ( 𝐴 ∈ V ∧ 𝐵𝐶 ) → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
2 1 ex ( 𝐴 ∈ V → ( 𝐵𝐶 → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) ) )
3 reldom Rel ≼
4 3 brrelex1i ( 𝐴𝐵𝐴 ∈ V )
5 f1f ( 𝑓 : 𝐴1-1𝐵𝑓 : 𝐴𝐵 )
6 fdm ( 𝑓 : 𝐴𝐵 → dom 𝑓 = 𝐴 )
7 vex 𝑓 ∈ V
8 7 dmex dom 𝑓 ∈ V
9 6 8 eqeltrrdi ( 𝑓 : 𝐴𝐵𝐴 ∈ V )
10 5 9 syl ( 𝑓 : 𝐴1-1𝐵𝐴 ∈ V )
11 10 exlimiv ( ∃ 𝑓 𝑓 : 𝐴1-1𝐵𝐴 ∈ V )
12 4 11 pm5.21ni ( ¬ 𝐴 ∈ V → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
13 12 a1d ( ¬ 𝐴 ∈ V → ( 𝐵𝐶 → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) ) )
14 2 13 pm2.61i ( 𝐵𝐶 → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )