Step |
Hyp |
Ref |
Expression |
1 |
|
brdom2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
2 |
1
|
ex |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) |
3 |
|
reldom |
⊢ Rel ≼ |
4 |
3
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
5 |
|
f1f |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
6 |
|
fdm |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → dom 𝑓 = 𝐴 ) |
7 |
|
vex |
⊢ 𝑓 ∈ V |
8 |
7
|
dmex |
⊢ dom 𝑓 ∈ V |
9 |
6 8
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
10 |
5 9
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
12 |
4 11
|
pm5.21ni |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
13 |
12
|
a1d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) |
14 |
2 13
|
pm2.61i |
⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |