Step |
Hyp |
Ref |
Expression |
1 |
|
f1eq2 |
|- ( x = A -> ( f : x -1-1-> y <-> f : A -1-1-> y ) ) |
2 |
1
|
exbidv |
|- ( x = A -> ( E. f f : x -1-1-> y <-> E. f f : A -1-1-> y ) ) |
3 |
|
f1eq3 |
|- ( y = B -> ( f : A -1-1-> y <-> f : A -1-1-> B ) ) |
4 |
3
|
exbidv |
|- ( y = B -> ( E. f f : A -1-1-> y <-> E. f f : A -1-1-> B ) ) |
5 |
|
df-dom |
|- ~<_ = { <. x , y >. | E. f f : x -1-1-> y } |
6 |
2 4 5
|
brabg |
|- ( ( A e. _V /\ B e. C ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
7 |
6
|
ex |
|- ( A e. _V -> ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) ) |
8 |
|
reldom |
|- Rel ~<_ |
9 |
8
|
brrelex1i |
|- ( A ~<_ B -> A e. _V ) |
10 |
|
f1f |
|- ( f : A -1-1-> B -> f : A --> B ) |
11 |
|
fdm |
|- ( f : A --> B -> dom f = A ) |
12 |
|
vex |
|- f e. _V |
13 |
12
|
dmex |
|- dom f e. _V |
14 |
11 13
|
eqeltrrdi |
|- ( f : A --> B -> A e. _V ) |
15 |
10 14
|
syl |
|- ( f : A -1-1-> B -> A e. _V ) |
16 |
15
|
exlimiv |
|- ( E. f f : A -1-1-> B -> A e. _V ) |
17 |
9 16
|
pm5.21ni |
|- ( -. A e. _V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
18 |
17
|
a1d |
|- ( -. A e. _V -> ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) ) |
19 |
7 18
|
pm2.61i |
|- ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |