Metamath Proof Explorer


Theorem brdomg

Description: Dominance relation. (Contributed by NM, 15-Jun-1998)

Ref Expression
Assertion brdomg
|- ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )

Proof

Step Hyp Ref Expression
1 f1eq2
 |-  ( x = A -> ( f : x -1-1-> y <-> f : A -1-1-> y ) )
2 1 exbidv
 |-  ( x = A -> ( E. f f : x -1-1-> y <-> E. f f : A -1-1-> y ) )
3 f1eq3
 |-  ( y = B -> ( f : A -1-1-> y <-> f : A -1-1-> B ) )
4 3 exbidv
 |-  ( y = B -> ( E. f f : A -1-1-> y <-> E. f f : A -1-1-> B ) )
5 df-dom
 |-  ~<_ = { <. x , y >. | E. f f : x -1-1-> y }
6 2 4 5 brabg
 |-  ( ( A e. _V /\ B e. C ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
7 6 ex
 |-  ( A e. _V -> ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) )
8 reldom
 |-  Rel ~<_
9 8 brrelex1i
 |-  ( A ~<_ B -> A e. _V )
10 f1f
 |-  ( f : A -1-1-> B -> f : A --> B )
11 fdm
 |-  ( f : A --> B -> dom f = A )
12 vex
 |-  f e. _V
13 12 dmex
 |-  dom f e. _V
14 11 13 eqeltrrdi
 |-  ( f : A --> B -> A e. _V )
15 10 14 syl
 |-  ( f : A -1-1-> B -> A e. _V )
16 15 exlimiv
 |-  ( E. f f : A -1-1-> B -> A e. _V )
17 9 16 pm5.21ni
 |-  ( -. A e. _V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )
18 17 a1d
 |-  ( -. A e. _V -> ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) )
19 7 18 pm2.61i
 |-  ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) )