| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1eq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝑥 –1-1→ 𝑦  ↔  𝑓 : 𝐴 –1-1→ 𝑦 ) ) | 
						
							| 2 | 1 | exbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦 ) ) | 
						
							| 3 |  | f1eq3 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑓 : 𝐴 –1-1→ 𝑦  ↔  𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 4 | 3 | exbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝑦  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 5 |  | df-dom | ⊢  ≼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 } | 
						
							| 6 | 2 4 5 | brabg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐴  ∈  V  →  ( 𝐵  ∈  𝐶  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) | 
						
							| 8 |  | reldom | ⊢ Rel   ≼ | 
						
							| 9 | 8 | brrelex1i | ⊢ ( 𝐴  ≼  𝐵  →  𝐴  ∈  V ) | 
						
							| 10 |  | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  𝑓 : 𝐴 ⟶ 𝐵 ) | 
						
							| 11 |  | fdm | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  dom  𝑓  =  𝐴 ) | 
						
							| 12 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 13 | 12 | dmex | ⊢ dom  𝑓  ∈  V | 
						
							| 14 | 11 13 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  𝐴  ∈  V ) | 
						
							| 15 | 10 14 | syl | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵  →  𝐴  ∈  V ) | 
						
							| 16 | 15 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵  →  𝐴  ∈  V ) | 
						
							| 17 | 9 16 | pm5.21ni | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | 
						
							| 18 | 17 | a1d | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐵  ∈  𝐶  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) ) | 
						
							| 19 | 7 18 | pm2.61i | ⊢ ( 𝐵  ∈  𝐶  →  ( 𝐴  ≼  𝐵  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |